
Reference manual

FICO R© Xpress Optimization XPRD: Mosel remote invocation li-
brary

Reference manual

Release 1.4

Last update June 2015

www.fico.com Make every decision countTM

This material is the confidential, proprietary, and unpublished property of Fair Isaac Corporation.
Receipt or possession of this material does not convey rights to divulge, reproduce, use, or allow
others to use it without the specific written authorization of Fair Isaac Corporation and use must
conform strictly to the license agreement.

The information in this document is subject to change without notice. If you find any problems in
this documentation, please report them to us in writing. Neither Fair Isaac Corporation nor its
affiliates warrant that this documentation is error-free, nor are there any other warranties with
respect to the documentation except as may be provided in the license agreement.

©2011–2017 Fair Isaac Corporation. All rights reserved. Permission to use this software and its
documentation is governed by the software license agreement between the licensee and Fair Isaac
Corporation (or its affiliate). Portions of the program may contain copyright of various authors and
may be licensed under certain third-party licenses identified in the software, documentation, or
both.

In no event shall Fair Isaac Corporation or its affiliates be liable to any person for direct, indirect,
special, incidental, or consequential damages, including lost profits, arising out of the use of this
software and its documentation, even if Fair Isaac Corporation or its affiliates have been advised of
the possibility of such damage. The rights and allocation of risk between the licensee and Fair Isaac
Corporation (or its affiliates) are governed by the respective identified licenses in the software,
documentation, or both.

Fair Isaac Corporation and its affiliates specifically disclaim any warranties, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. The software and
accompanying documentation, if any, provided hereunder is provided solely to users licensed under
the Fair Isaac Software License Agreement. Fair Isaac Corporation and its affiliates have no
obligation to provide maintenance, support, updates, enhancements, or modifications except as
required to licensed users under the Fair Isaac Software License Agreement.

FICO and Fair Isaac are trademarks or registered trademarks of Fair Isaac Corporation in the United
States and may be trademarks or registered trademarks of Fair Isaac Corporation in other countries.
Other product and company names herein may be trademarks of their respective owners.

XPRD

Deliverable Version: A

Last Revised: June 2015

Version 1.4

Contents

1 Introduction 1
1.1 Overview . 1
1.2 File managers . 2

2 Functions of the XPRD library 5
2.1 Contexts and event handling . 5

XPRDinit . 6
XPRDfinish . 7
XPRDqueueempty . 8
XPRDgetevent . 9
XPRDdropevent . 10
XPRDwaitevent . 11
XPRDabortwait . 12

2.2 Mosel instances management . 13
XPRDconnect . 14
XPRDdisconnect . 15
XPRDconnected . 16
XPRDgetxprd . 17
XPRDbanner . 18
XPRDinstid . 19
XPRDsysinfo . 20
XPRDsetdefstream . 21
XPRDcompmod, XPRDcompmodsec . 22

2.3 Model management . 24
XPRDloadmod, XPRDloadmodsec . 25
XPRDgetmosel . 26
XPRDresetmod . 27
XPRDrunmod . 28
XPRDstoprunmod . 29
XPRDgetstatus . 30
XPRDgetdata . 31
XPRDgetexitcode . 32
XPRDgetnumber . 33
XPRDgetrmtid . 34
XPRDunloadmod . 35
XPRDsendevent . 36
XPRDsetdata . 37

2.4 Remote file access . 38
XPRDfflush . 39
XPRDfopen . 40
XPRDfclose . 41
XPRDfread . 42
XPRDfskip . 43
XPRDfwrite . 44

2.5 Connection manager . 45

Fair Isaac Corporation Confidential and Proprietary Information i

Contents

XPRDstart . 46
XPRDshutdown . 47
XPRDsetmsglev . 48
XPRDsetmsgcb . 49

2.6 Miscellaneous . 50
XPRDsetkeepalive . 51
XPRDgetkeepalive . 52
XPRDsetfsrvopt . 53
XPRDgetfsrvopt . 54
XPRDfindxsrvs . 55
XPRDsetsshcmd . 56
XPRDgetsshcmd . 57

Appendix 58

A Contacting FICO 58
Product support . 58
Product education . 58
Product documentation . 58
Sales and maintenance . 59
Related services . 59
About FICO . 59

Index 60

Fair Isaac Corporation Confidential and Proprietary Information ii

CHAPTER 1

Introduction

The Mosel remote invocation library (XPRD) makes it possible to build applications requiring the
Xpress technology that run from environments where Xpress is not installed—including
architectures for which Xpress is not available. Relying on the Mosel Distributed Framework (see
Mosel module mmjobs), this self-contained library (i.e. with no dependency on the usual Xpress
libraries) provides the necessary routines to start Mosel instances either on the local machine or
on remote hosts and control them in a similar way as if they were invoked through the Mosel
libraries. In particular, the published functionality includes

� redirection of standard streams (input, output and errors);

� compiling and loading of models;

� running and interrupting models.

In addition to these standard operations, the library supports the file handling mechanisms of
mmjobs (transparent file access between instances) as well as its event signaling system (events
can be exchanged between the application and running models).

1.1 Overview

Thanks to the Mosel Distributed Framework a Mosel model can start Mosel instances and use
them to compile and run other models. The XPRD package implements the protocol used by the
Mosel Distributed Framework such that an application using this library can perform the same
general operations as a model using the mmjobs module: connect a new instance, compile
models, load and run bim files, as well as access remote files and exchange events with running
models. The following example shows the typical structure of a program using XPRD (for the sake
of clarity error handling is not included):

{
XPRDcontext xprd;
XPRDmosel mosel;
XPRDmodel model;

/* Create an XPRD context */
xprd=XPRDinit();

/* Start an instance on host ’xpserver’ */
mosel=XPRDconnect(xprd, "xpserver", NULL, NULL, NULL, 0);

/* Compile model from local source - bim file saved on remote instance */
XPRDcompmod(mosel, "", "rmt:mymod.mos", "mymod.bim", "");

/* Load bim file */
model=XPRDloadmod(mosel, "mymod.bim");

Fair Isaac Corporation Confidential and Proprietary Information 1

Introduction

/* Run model */
XPRDrunmod(model, "");

/* Wait for termination of model before finishing */
XPRDwaitevent(xprd,-1);
printf("status: %d exit code:%d\n",

XPRDgetstatus(model), XPRDgetexitcode(model));
XPRDunloadmod(model);
XPRDdisconnect(mosel);
XPRDfinish(xprd);

}

The obvious use of XPRD is when Xpress is not installed on the host running the application: in
this case one (or several) remote Mosel instance(s) can be launched on host(s) supporting Xpress.
This is a requirement if the application is running on an architecture for which Xpress is not
available but may also be useful if the application is executed on a machine with insufficient
computational resources. In this scenario, the execution of models may be transfered to
dedicated servers or even to some cloud computing facility.

XPRD can also be helpful when the models are to be run on the same host as the application
calling the models. In this case, the program could of course use directly the usual Mosel libraries
for its optimisation tasks and run models from the same process as the application itself. However,
in certain cases it might be preferable to run the optimisation tasks in a separate process in order
to preserve the application when resources required by the solution process cannot be predicted
or if the models to be run are not coming from a trusted source. For example, an application
using XPRD can start Mosel from a process with a limited amount of memory or CPU.

The XPRD package has no dependency on any external library and the Java version is written in
pure Java (as opposed to the Mosel Java libraries that rely on native calls): as a consequence, an
application using XPRD does not require any supplementary installation task and can be written
in pure Java.

1.2 File managers

XPRD acts as a master model, and therefore has to process file operations requested from its
remote instances (i.e. when a model opens a file using the "rmt:" driver). By default, the library
handles file requests using the standard operating system routines looking for files from the
process’ current working directory. For example, if a remote instance asks for the file
"rmt:myfile.txt", the library will look for "myfile.txt" in the current directory. In addition to
accessing physical files, the I/O driver "sysfd:" is also supported by the library: typically a remote
instance uses "rmt:sysfd:1" for its default output and "rmt:sysfd:2" for its default error stream.
These streams are automatically routed to the corresponding local file descriptors such that
output from remote instances is sent to the usual streams on the calling process.

At the time of creating a Mosel instance using function XPRDconnect it is possible to specify a file
manager in order to complement or replace the default file handling mechanism. The entry point
for this user-provided manager is a function of the following type:

void *fmgr(void *fctx, char *fname, int mode,
XPRDfct_data* sync, XPRDfct_close *close, XPRDfct_skip *skip,
char *errmsg, int msgsize);

This function is called instead of the default file manager whenever a request for opening a file is
received from the corresponding instance. The first argument is the data pointer provided when
creating the instance; fname is the file to open and mode its opening mode (e.g. XPRD_F_INPUT for
reading). If this routine returns NULL, the file request is processed using the default procedure as
described above. If the value XPRD_FMGR_ERR is returned, the request is rejected and an error

Fair Isaac Corporation Confidential and Proprietary Information 2

Introduction

message (NUL terminated) may be copied into buffer errmsg of size msgsize. Any other value is
interpreted as a file descriptor pointer to be used with the provided I/O routines sync, skip and
close.

The user functions sync, skip and close are used to transfer data from/to the local file and
release the resources used by the file descriptor when the file is closed. Only the first function is
mandatory (i.e. the others can be set to NULL). The signature of these routines is as follows:

int sync(void *fd, int buf, int bufsize);
int skip(void *fd,int nbtoskip);
int close(void *fd);

When the file is open for reading, the function sync is expected to copy into buffer buf up to
bufsize bytes of data. The return value should be the number of bytes copied (0 indicating an
end of file) or a negative value to report an error condition.
In the case of writing to the file, this function has to get bufsize bytes from buffer buf. The
return value should be bufsize if writing is successful, any other value is interpreted as an I/O
error.
The optional routine skip may be used to skip a number of bytes from a file open for reading
(the function is not used on an output stream). Its return value must be positive or 0 in case of
success; the special value -2 indicates the operation is not supported (in which case bytes to skip
are read using the sync routine) and any other value is interpreted as an I/O error.

In the following example, the file manager my_open redirects the pseudo file "outremote" to the
function outremote (that simply displays the text it receives) and keeps the default behaviour for
files open for reading and through "sysfd:" (redirection to standard streams). Any other queries
are rejected.

void* XPRD_RTC my_open(void *ctx, char *filename,
int mode, XPRDfct_data* fct_data, XPRDfct_close* fct_close,
char *msg, int msglen)

{
if(strcmp(filename,"outremote")==0)
{
if((mode&(XPRD_F_READ|XPRD_F_WRITE))!=XPRD_F_WRITE)
{
strncpy(msg, "’outremote’ is write only!", msglen);
return XPRD_FMGR_ERR;

}
else
{
*fct_data=outremote;
*fct_close=NULL;
return (void*)1;

}
}
else
if((strncmp(filename,"sysfd:",6)==0)||

((mode&(XPRD_F_READ|XPRD_F_WRITE))==XPRD_F_READ))
return NULL;

else
{
strncpy(msg, "access denied", msglen);
return XPRD_FMGR_ERR;

}
}

int XPRD_RTC outremote(void *data, char *buf, int size)
{
printf("REMOTE: %.*s", size, buf);
return size;

}

Fair Isaac Corporation Confidential and Proprietary Information 3

Introduction

The above manager has to be passed to XPRD at the time of creating a new instance. In the
example below, the error stream of the instance is redirected to the pseudo file "outremote":

mosel=XPRDconnect(xprd, "", my_open, NULL, msg, sizeof(msg));
XPRDsetdefstream(mosel, NULL, XPRD_F_ERROR, "rmt:outremote");

Fair Isaac Corporation Confidential and Proprietary Information 4

CHAPTER 2

Functions of the XPRD library

2.1 Contexts and event handling

Each Mosel instance is attached to an XPRD context. This structure is also used to handle the
queue of events received from the models run on the associated Mosel instances.

XPRDabortwait Release a thread suspended by a call to XPRDwaitevent. p. 12

XPRDdropevent Drop the next event from the queue. p. 10

XPRDfinish Release an XPRD context. p. 7

XPRDgetevent Retrieve the next event from the queue. p. 9

XPRDinit Create a new XPRD context. p. 6

XPRDqueueempty Check whether the event queue is empty. p. 8

XPRDwaitevent Suspend the execution of the calling thread until an event is available.
p. 11

Fair Isaac Corporation Confidential and Proprietary Information 5

Functions of the XPRD library

XPRDinit

Purpose
Create a new XPRD context.

Synopsis
XPRDcontext XPRDinit();

Return value
The new context or NULL in case of error.

Further information
Each context created using this function must be released by a call to XPRDfinish.

Related topics
XPRDfinish.

Fair Isaac Corporation Confidential and Proprietary Information 6

Functions of the XPRD library

XPRDfinish

Purpose
Release an XPRD context.

Synopsis
void XPRDfinish(XPRDcontext ctx);

Argument
ctx Context to be released

Further information
This routine releases all resources used by the given context: all active connections are closed and
the event queue is freed. A context can no longer be used after it has been passed to this
function.

Related topics
XPRDinit.

Fair Isaac Corporation Confidential and Proprietary Information 7

Functions of the XPRD library

XPRDqueueempty

Purpose
Check whether the event queue is empty.

Synopsis
int XPRDqueueempty(XPRDcontext ctx);

Argument
ctx XPRD context

Return value
1 if the queue is empty, 0 otherwise.

Related topics
XPRDgetevent, XPRDdropevent.

Fair Isaac Corporation Confidential and Proprietary Information 8

Functions of the XPRD library

XPRDgetevent

Purpose
Retrieve the next event from the queue.

Synopsis
int XPRDgetevent(XPRDcontext ctx, XPRDmodel *sender, int *cls, double *value);

Arguments
ctx XPRD context

sender Pointer to return a reference to the sender of the event

cls Pointer to return the class of the event

value Pointer to return the value of the event

Return value
0 if successful, 1 if the queue is empty.

Related topics
XPRDqueueempty, XPRDdropevent, XPRDwaitevent, XPRDsendevent.

Fair Isaac Corporation Confidential and Proprietary Information 9

Functions of the XPRD library

XPRDdropevent

Purpose
Drop the next event from the queue.

Synopsis
void XPRDdropevent(XPRDcontext ctx);

Argument
ctx XPRD context

Further information
This routine has no effect if the queue is empty.

Related topics
XPRDqueueempty, XPRDgetevent.

Fair Isaac Corporation Confidential and Proprietary Information 10

Functions of the XPRD library

XPRDwaitevent

Purpose
Suspend the execution of the calling thread until an event is available.

Synopsis
int XPRDwaitevent(XPRDcontext ctx, int timeout);

Arguments
ctx XPRD context

timeout maximum wait time (in seconds). A value smaller than 1 will cause an infinite wait

Return value
1 if the time limit has been reached, 0 otherwise.

Further information
If the event queue is not empty this routine returns immediately. This function can be interrupted
by a call to XPRDabortwait (from a separate thread). In this case the function returns 0 even if the
queue is empty.

Related topics
XPRDqueueempty, XPRDabortwait.

Fair Isaac Corporation Confidential and Proprietary Information 11

Functions of the XPRD library

XPRDabortwait

Purpose
Release a thread suspended by a call to XPRDwaitevent.

Synopsis
void XPRDabortwait(XPRDcontext ctx);

Argument
ctx XPRD context

Further information
This routine has no effect if no thread is waiting for the specified queue.

Related topics
XPRDqueueempty, XPRDwaitevent.

Fair Isaac Corporation Confidential and Proprietary Information 12

Functions of the XPRD library

2.2 Mosel instances management

The XPRDconnect function starts a Mosel instance and returns a XPRDmosel object. The method
used to create this instance depends on a connection string that is interpreted in a similar way as
with the connect function of the mmjobs Mosel module: three I/O drivers can be used to launch a
Mosel instance. The first one, "rcmd:", executes a command in a separate process—typically this
will be directly mosel or a special command to start Mosel on a remote host (e.g. the command
ssh). The second driver, "xsrv:", requires the xprmsrv Mosel remote launcher to run on the
target machine: the connection is established with such a server through a TCP link. The last
driver, "xssh:", is similar to the previous one but establishes the connection to the server through
a secure SSH tunnel. The handling of the tunnel is achieved by a separate process: by default, the
xprmsrv program is used but optionally another SSH client may be selected using XPRDsetsshcmd.

XPRDbanner Get the connection banner of a Mosel instance. p. 18

XPRDcompmod, XPRDcompmodsec Compile a model source file. p. 22

XPRDconnect Create a new Mosel instance. p. 14

XPRDconnected Check whether a Mosel instance is still connected. p. 16

XPRDdisconnect Release a Mosel instance. p. 15

XPRDgetxprd Get the XPRD context associated to a Mosel instance. p. 17

XPRDinstid Get the ID of a Mosel instance. p. 19

XPRDsetdefstream Set default input/output streams. p. 21

XPRDsysinfo Get system information about the host running a Mosel instance. p. 20

Fair Isaac Corporation Confidential and Proprietary Information 13

Functions of the XPRD library

XPRDconnect

Purpose
Create a new Mosel instance.

Synopsis
XPRDmosel XPRDconnect(XPRDcontext ctx, const char *cnstr, XPRDfct_open fmgr, void

*fctx, char *errmsg, int msglen);

Arguments
ctx XPRD context

cnstr Connection string

fmgr File manager routine (can be NULL)

fctx Data pointer to be passed to the fmgr routine

errmsg Buffer to return error messages

msglen Size of errmsg

Return value
A Mosel instance or NULL in case of failure.

Example
In the following example 4 Mosel instances are started: m1 is started in a separate process on the
same host; m2 is launched using the xprmsrv server running on host "myserver"; m3 is executed
using the ssh command on host "secure", and for m4, the xprmsrv server running on host "mybox"
is requested to use the context "xpress" with password "mypass":

m1=XPRDconnect(xdctx,"",NULL,NULL,buf1,256);
m2=XPRDconnect(xdctx,"myserver",NULL,NULL,buf2,256);
m3=XPRDconnect(xdctx,"rcmd:ssh secure mosel -r",NULL,NULL,buf3,256);
m4=XPRDconnect(xdctx,"xsrv:mybox/xpress/mypass",NULL,NULL,buf4,256);

Further information

1. An empty connection string "" is equivalent to "rcmd:" (instance started on the same machine in
a separate process). Any other string not starting by either "rcmd:", "xsrv:" or "xssh:" is
interpreted as a host name that is prefixed by "xsrv:" (instance started on the specified host
using the xprmsrv protocol). Refer to the Mosel Language Reference Manual, section on module
mmjobs for further detail on how to use these drivers.

2. In case of failure, the parameter errmsg receives the error message reported by the driver used to
perform the connection.

3. The optional file manager fmgr allows to control file access from the created remote instance: all
requests for opening files are passed to this routine. Depending on the return value of the
function, the request is rejected, processed by a user provided function or handled by the default
file manager (i.e. direct access to physical files). Refer to Section 1.2 for further explanation.

4. Function XPRDstart is automatically called after a successful connection in order to start (if
necessary) the connection manager.

5. Default streams of the newly created instance are initialised with "null:" for the input (i.e.
stream disabled); "rmt:sysfd:1" for output and "rmt:sysfd:2" for errors. These settings can be
changed using XPRDsetdefstream.

Related topics
XPRDsetsshcmd, XPRDdisconnect, XPRDconnected.

Fair Isaac Corporation Confidential and Proprietary Information 14

Functions of the XPRD library

XPRDdisconnect

Purpose
Release a Mosel instance.

Synopsis
void XPRDdisconnect(XPRDmosel mosel);

Argument
mosel Mosel instance

Further information

1. All models are unloaded (running models are first stopped) before closing the connection and
releasing the resources used by the instance.

2. Function XPRDshutdown is automatically called during the disconnection procedure.

3. An XPRDmosel object can no longer be used after it has been disconnected.

Related topics
XPRDconnect, XPRDconnected.

Fair Isaac Corporation Confidential and Proprietary Information 15

Functions of the XPRD library

XPRDconnected

Purpose
Check whether a Mosel instance is still connected.

Synopsis
int XPRDconnected(XPRDmosel mosel);

Argument
mosel Mosel instance

Return value
1 if the instance is connected, 0 otherwise.

Further information

1. The connection to a remote instance may be lost due to a network failure or because the
corresponding process has terminated: this routine allows to check for this situation.

2. A call to XPRDdisconnect is still required to release the local resources used by an instance even if
this function reports the instance is no longer active.

Related topics
XPRDconnect, XPRDdisconnect.

Fair Isaac Corporation Confidential and Proprietary Information 16

Functions of the XPRD library

XPRDgetxprd

Purpose
Get the XPRD context associated to a Mosel instance.

Synopsis
XPRDcontext XPRDgetxprd(XPRDmosel mosel);

Argument
mosel Mosel instance

Return value
The XPRD context to which the instance is associated.

Related topics
XPRDsysinfo, XPRDbanner.

Fair Isaac Corporation Confidential and Proprietary Information 17

Functions of the XPRD library

XPRDbanner

Purpose
Get the connection banner of a Mosel instance.

Synopsis
const char* XPRDbanner(XPRDmosel mosel);

Argument
mosel Mosel instance

Return value
Message displayed by the instance upon connection.

Related topics
XPRDsysinfo, XPRDgetxprd.

Fair Isaac Corporation Confidential and Proprietary Information 18

Functions of the XPRD library

XPRDinstid

Purpose
Get the ID of a Mosel instance.

Synopsis
int XPRDinstid(XPRDmosel mosel);

Argument
mosel Mosel instance

Return value
Node number associated to the instance.

Fair Isaac Corporation Confidential and Proprietary Information 19

Functions of the XPRD library

XPRDsysinfo

Purpose
Get system information about the host running a Mosel instance.

Synopsis
char* XPRDsysinfo(XPRDmosel mosel,int what, char *buf,size_t buflen);

Arguments
mosel Mosel instance

what What information to collect:

XPRD_SYS_NAME Name of the operating system
XPRD_SYS_VER Version name of the operating system
XPRD_SYS_REL Release number of the operating system
XPRD_SYS_PROC Processor type
XPRD_SYS_ARCH Processor architecture (32 or 64 bit)
XPRD_SYS_NODE Computer name

buf Buffer to store the information

buflen Size of buf

Return value
A reference to buf or NULL in case of error.

Further information
Several information items can be obtained in a single call by summing up the option codes. In
such a case, the resulting string consists in the different items separated by commas. All available
information can be retrieved using XPRD_SYS_ALL.

Related topics
XPRDbanner, XPRDgetxprd.

Fair Isaac Corporation Confidential and Proprietary Information 20

Functions of the XPRD library

XPRDsetdefstream

Purpose
Set default input/output streams.

Synopsis
int XPRDsetdefstream(XPRSmodel mosel, XPRDmodel model, int wmd, const char *filename);

Arguments
mosel Reference to a Mosel instance or NULL
model Reference to a model or NULL
wmd Stream to set. Possible values:

XPRD_F_READ Default input stream
XPRD_F_WRITE Default output stream
XPRD_F_ERROR Default error stream
XPRD_F_LINBUF Use line buffering

filename Extended file name to be used for the stream.

Return value
0 if successful, 1 otherwise.

Further information

1. This function sets the default I/O streams to be used by a model (if model is provided) or by the
entire instance (if mosel is provided). Model streams can be changed only when the model is not
running. Each stream is associated with an extended file name (i.e. I/O drivers can be used). For
output streams, XPRD_F_LINBUF may be specified (e.g.XPRD_F_WRITE+XPRD_F_LINBUF) in order to
enable line buffering for the corresponding stream (the error stream is always open using line
buffering).

2. For input and output streams, the filename is stored and streams are actually opened when
execution of the model starts: in case of an invalid file name, the error is not reported by this
function. The error stream is immediately opened so the case of an invalid file name is reported
by this function. If the first parameter is NULL, this function defines the corresponding global
stream: it is used as the default when a model is loaded and whenever no model information is
available (e.g. compilation errors, error on modules, etc.). This option can be used only if no
model is currently loaded in memory.

3. Using an empty string as the file name implies resetting to the original default stream: "null" for
input; "rmt:sysfd:1" for output and "rmt:sysfd:2 for error.

Fair Isaac Corporation Confidential and Proprietary Information 21

Functions of the XPRD library

XPRDcompmod, XPRDcompmodsec

Purpose
Compile a model source file.

Synopsis
int XPRDcompmod(XPRDmosel mosel, const char *options, const char *srcfile, const char

*dstfile, const char *userc);
int XPRDcompmodsec(XPRDmosel mosel, const char *options, const char *srcfile, const

char *dstfile, const char *userc, const char *passfile, const char *privkey,
const char *kfile);

Arguments
mosel Mosel instance

options Compilation options (may be NULL). Possible values:
"g" Include debugging information: in the case of a run time error during the

execution of the model the location of the error in the source file may be
indicated

"G" Include tracing information: with this option the model can be run through
the debugger for an execution step by step

"s" Strip symbols: secure the bim file by removing all private symbol names used
in the source model

"p" Parse only: stop after the syntax analysis of the source file, do not compile
(no file generated)

"bx=prefix" Package prefix (can be quoted with single or double quotes)
"ix=prefix" Include source prefix (can be quoted with single or double quotes)
"S" Sign the bim file
"E" Encrypt the bim file
"F" The argument pass is a file name (not the password itself)
"V" Accept to load signed packages only if their signature can be verified
"T" Accept to load only signed packages with a valid signature

scrfile Name of the source file

dstfile Name of the destination file (may be NULL)

userc Commentary text that will be saved as is at the beginning of the output file (may be
NULL)

passfile Password or password file (for encryption with a password)

privkey Private key file (for bim file signing)

kfile File of public keys (for encryption with public keys)

Return value
Execution status:
0 Function executed sucessfully

1 Parsing phase has failed (syntax error or file access error)

2 Error in compilation phase (a semantic error has been detected)

3 Error writing the output file

4 License error (compiler not authorized)

Example
Ask the Mosel instance minst to compile the model "mymod.mos" stored locally. The resulting bim
file "mymod.bim" is saved on the host running this instance:

m=XPRDcompmod(minst, "", "rmt:mymod.mos", "mymod.bim", "");

Fair Isaac Corporation Confidential and Proprietary Information 22

Functions of the XPRD library

Further information

1. This function compiles a given model source file into a binary model file (bim file) that is required
as input to function XPRDloadmod for executing the model. The second form of the function will
be used to generate encrypted and/or signed bim files.

2. The source file name may contain environment variable references using the notation ${varname}
(for example,
‘${XPRESSDIR}/examples/mymodel’) that are expanded to generate the actual name.

3. When sending a compilation request to a separate Mosel instance, it is important to keep in mind
that the operation is performed in the environment of this instance (in particular its current
working directory) and file names should be specified appropriately (the rmt: I/O driver can be
particularly helpful in this context).

4. The argument kfile is a list of public key files (i.e. each line of the file is a key file name): when
encrypting a file, the encryption is performed for each of the listed public keys such that the bim
file can be decrypted by any of the corresponding private keys.

Related topics
XPRDloadmod, XPRDrunmod.

Fair Isaac Corporation Confidential and Proprietary Information 23

Functions of the XPRD library

2.3 Model management

A model object is created by loading a bim file onto a Mosel instance with a call to XPRDloadmod.
Once a model has been loaded, it can be run (XPRDrunmod), send events (XPRDsendevent) and
possibly be interrupted before its normal termination (XPRDstoprunmod). Additional functions
provide information about the last execution. Models must be unloaded using XPRDunloadmod in
order to release the resources they use both on the local host and the remote instance.

XPRDgetdata Return the data pointer of a model. p. 31

XPRDgetexitcode Return the exit code of a model after its execution. p. 32

XPRDgetmosel Get a reference to the Mosel instance on which a model is loaded.
p. 26

XPRDgetnumber Return the model number. p. 33

XPRDgetrmtid Return the ID of the model on the remote instance. p. 34

XPRDgetstatus Return the current status of a model. p. 30

XPRDloadmod, XPRDloadmodsec Load a Binary Model file onto the specified instance. p. 25

XPRDresetmod Reset a model. p. 27

XPRDrunmod Run a model. p. 28

XPRDsendevent Send an event to a running model. p. 36

XPRDsetdata Define the data pointer of a model. p. 37

XPRDstoprunmod Stop a running model. p. 29

XPRDunloadmod Unload a model. p. 35

Fair Isaac Corporation Confidential and Proprietary Information 24

Functions of the XPRD library

XPRDloadmod, XPRDloadmodsec

Purpose
Load a Binary Model file onto the specified instance.

Synopsis
XPRDmodel XPRDloadmod(XPRDmosel mosel, const char *bname);
XPRDmodel XPRDloadmodsec(XPRDmosel mosel, const char *bname, const char *flags, const

char *passfile, const char *privkey, const char *keys);

Arguments
mosel Mosel instance

bname Name of a binary model file

flags Loading options:
"c" Check signature (if the file is signed)
"V" If the file is signed, load it only if the signature is valid
"T" Load only signed files with a valid signature
"F" The argument passfile is a file name (not the password itself)

passfile Password or password file (for encrypted bim files)

privkey Private key file (for encrypted bim files)

keys File of public keys

Return value
Reference to the model that has been loaded or NULL.

Example
Load model "myfile.bim" stored locally onto the minst remote instance:

m=XPRDloadmod(minst, "rmt:mymod.bim");

Further information

1. This function returns the reference of a new model instance created from a binary model file. The
second form of the function will be used to load encrypted and/or signed bim files if additional
information has to be provided. While loading a model from a file, Mosel also automatically
opens any additional modules that are required by this model.

2. It is important to keep in mind that the operation is performed in the environment of a remote
instance (in particular its current working directory) and file names should be specified
appropriately (the rmt: I/O driver can be particularly helpful in this context).

3. Default streams of the newly created model are inherited from the Mosel instance mosel. These
settings can be changed using XPRDsetdefstream.

4. The argument keys is a list of public key files (i.e. each line of the file is a key file name): when a
signed bim file is loaded, its signature is checked with the keys listed in this file. If this argument
is not specified, the signing key is searched in the default public keys directory located at
getparam("ssl_dir")+"/pubkeys".

Related topics
XPRDrunmod, XPRDunloadmod.

Fair Isaac Corporation Confidential and Proprietary Information 25

Functions of the XPRD library

XPRDgetmosel

Purpose
Get a reference to the Mosel instance on which a model is loaded.

Synopsis
XPRDmosel XPRDgetmosel(XPRDmodel model);

Argument
mosel Mosel instance

Return value
The Mosel instance on which the model is loaded.

Fair Isaac Corporation Confidential and Proprietary Information 26

Functions of the XPRD library

XPRDresetmod

Purpose
Reset a model.

Synopsis
void XPRDresetmod(XPRDmodel model);

Argument
model Reference to a model

Further information
This function resets a model after its execution: all resources it has allocated are released. The
model returns to its state just after it has been loaded into memory. Note that this function is
automatically called before a model is unloaded or (re)run.

Related topics
XPRDrunmod, XPRDunloadmod.

Fair Isaac Corporation Confidential and Proprietary Information 27

Functions of the XPRD library

XPRDrunmod

Purpose
Run a model.

Synopsis
int XPRDrunmod(XPRDmodel model, const char *parlist);

Arguments
model Reference to a model

parlist String composed of model parameter initializations separated by commas, may be
NULL

Return value
0 if successful, a positive value if the execution cannot be started.

Further information

1. This procedure starts the execution of a model on its Mosel instance: when the procedure returns,
the model is not necessarily started (this may be delayed depending on the operating system
load) and not necessarily terminated (the second model is executing concurrently to the caller).

2. When the execution of the model is completed (normal termination, interruption after calling
XPRDstoprunmod, or runtime error) or could not be started, an event of class XPRD_EVENT_END is
sent to the caller. The execution status is returned via the event value and it can also be obtained
using XPRDgetstatus. The exit code related to the last execution may be retrieved using
XPRDgetexitcode.

3. If the same model has to be executed several times concurrently, it must be loaded several times
in different model objects.

4. The parameter parlist may be used to initialize the model parameters of the model/program
(e.g. "PAR1=12,PAR2=’tutu’").

Related topics
XPRDloadmod.

Fair Isaac Corporation Confidential and Proprietary Information 28

Functions of the XPRD library

XPRDstoprunmod

Purpose
Stop a running model.

Synopsis
void XPRDstoprunmod(XPRMmodel model);

Argument
model Model to interrupt

Further information
If the model is not currently running, no operation is performed. Note that the effect of this call
may not be immediate and the corresponding model may continue running a few seconds before
its effective interruption (for instance, the time required to complete an I/O operation).

Related topics
XPRDrunmod.

Fair Isaac Corporation Confidential and Proprietary Information 29

Functions of the XPRD library

XPRDgetstatus

Purpose
Return the current status of a model.

Synopsis
int XPRDgetstatus(XPRDmodel model);

Argument
model Reference to a model

Return value
Model status. Possible values are:
XPRD_RT_OK Normal termination

XPRD_RT_ERROR An error occured during execution

XPRD_RT_MATHERR Mathematical error (e.g. division by zero)

XPRD_RT_I/OERR Input/output error (e.g. cannot open file)

XPRD_RT_STOP Bit set if execution has been interrupted

XPRD_RT_FDCLOSED Connection to the remote host has been lost

XPRD_RT_RUNNING Model currently running

Further information
When the status is XPRD_RT_FDCLOSED, the model is no longer usable and the only possible
operation is XPRDunload or XPRDdisconnect that must be called in order to release local resources
used by the model.

Fair Isaac Corporation Confidential and Proprietary Information 30

Functions of the XPRD library

XPRDgetdata

Purpose
Return the data pointer of a model.

Synopsis
void *XPRDgetdata(XPRDmodel model);

Argument
model Reference to a model

Return value
Model data pointer.

Further information
This function returns the data pointer previously set using XPRDsetdata.

Fair Isaac Corporation Confidential and Proprietary Information 31

Functions of the XPRD library

XPRDgetexitcode

Purpose
Return the exit code of a model after its execution.

Synopsis
int XPRDgetexitcode(XPRDmodel model);

Argument
model Reference to a model

Return value
Execution status as stated by the Mosel procedure exit.

Fair Isaac Corporation Confidential and Proprietary Information 32

Functions of the XPRD library

XPRDgetnumber

Purpose
Return the model number.

Synopsis
int XPRDgetnumber(XPRDmodel model);

Argument
model Reference to a model

Return value
Model order number.

Related topics
XPRDgetdata.

Fair Isaac Corporation Confidential and Proprietary Information 33

Functions of the XPRD library

XPRDgetrmtid

Purpose
Return the ID of the model on the remote instance.

Synopsis
int XPRDgetrmtid(XPRDmodel model);

Argument
model Reference to a model

Return value
Model number as returned by the Mosel control parameter modelnumber.

Fair Isaac Corporation Confidential and Proprietary Information 34

Functions of the XPRD library

XPRDunloadmod

Purpose
Unload a model.

Synopsis
int XPRDunloadmod(XPRDmodel model);

Argument
model Reference to a model

Return value
0 if successful, 1 otherwise.

Further information
This function unloads the given model. All resources used by this model, including modules, are
released. The function fails if the model is running.

Related topics
XPRDloadmod.

Fair Isaac Corporation Confidential and Proprietary Information 35

Functions of the XPRD library

XPRDsendevent

Purpose
Send an event to a running model.

Synopsis
int XPRDsendevent(XPRDmodel model, int class, double value);

Arguments
model Model to send the event to

class Event class (must be >1)

value Event value

Further information

1. An event can be received only by a running model that is using the mmjobs module: sending an
event to a model that is not running or not using mmjobs is a no-operation.

2. Events are characterized by a class and a value. Event class values can be used to indicate the
cause of the event (for instance, 2 could mean ‘a new solution has been found’) and the
associated value may specify a property of the given instance (for example an objective value).
Except for the special value 1 (XPRD_EVENT_END) class values have no predefined meaning.

3. An event of class XPRD_EVENT_END (=1) with the model status as the associated event value is
automatically sent by each model to its parent when its execution terminates.

Related topics
XPRDwaitevent, XPRDgetevent.

Fair Isaac Corporation Confidential and Proprietary Information 36

Functions of the XPRD library

XPRDsetdata

Purpose
Define the data pointer of a model.

Synopsis
void XPRDsetdata(XPRDmodel model, void *data);

Arguments
model Reference to a model

data User defined data pointer

Further information
The provided reference is stored in the model structure and can be retrieved at a later stage using
XPRDgetdata. The data pointer is not used by XPRD and can be employed by the host application
for recording model specific information.

Fair Isaac Corporation Confidential and Proprietary Information 37

Functions of the XPRD library

2.4 Remote file access

These basic file operation routines allow an application to open a file for reading or writing on a
remote host through a connected Mosel instance.

XPRDfclose Close a file that was previously opened with XPRDfopen. p. 41

XPRDfflush Flush buffer of an output stream. p. 39

XPRDfopen Open a file on a remote instance. p. 40

XPRDfread Read a block of data from a remote file. p. 42

XPRDfskip Skip a block of data from a remote file. p. 43

XPRDfwrite Write a block of data to a remote file. p. 44

Fair Isaac Corporation Confidential and Proprietary Information 38

Functions of the XPRD library

XPRDfflush

Purpose
Flush buffer of an output stream.

Synopsis
int XPRDfflush(XPRDfile f);

Argument
f File descriptor

Return value
0 if successful.

Further information
The output buffer is automatically flushed when the file descriptor is closed.

Related topics
XPRDfwrite.

Fair Isaac Corporation Confidential and Proprietary Information 39

Functions of the XPRD library

XPRDfopen

Purpose
Open a file on a remote instance.

Synopsis
XPRDfile XPRDfopen(XPRDmosel mosel, const char *fname, int mode, char *errmsg, int

msglen);

Arguments
mosel Mosel instance

fname File name

mode Open mode (may be combined):

XPRD_F_BINARY Open file in binary mode (default is text mode)
XPRD_F_INPUT Open for reading
XPRD_F_OUTPUT Empty the file and open it for writing
XPRD_F_APPEND Open for writing, appending new data to the end of the file
XPRD_F_LINBUF If open for writing, flushes buffer after end of each line

errmsg Buffer to return error message

msglen Size of errmsg

Return value
A file descriptor or NULL in case of failure.

Example
Open file "myfile" located in the temporary directory of instance minst for reading in binary
mode:

f=XPRDfopen(minst, "tmp:myfile", XPRD_F_BINARY|XPRD_F_INPUT);

Further information

1. The specified file path is relative to the working directory of the Mosel instance performing the
file operation.

2. File operations are performed under the restrictions of the Mosel instance. For example, if the
remote instance does not have write access, this routine will fail to open a file for writing.

3. Just like accessing files from a Mosel model, any I/O drivers supported by the remote instance can
be used with this routine. Drivers "sysfd:", "tmp:" and "shmem:" are therefore available.

Related topics
XPRDfread, XPRDfskip, XPRDfwrite, XPRDfclose.

Fair Isaac Corporation Confidential and Proprietary Information 40

Functions of the XPRD library

XPRDfclose

Purpose
Close a file that was previously opened with XPRDfopen.

Synopsis
int XPRDfclose(XPRDfile f);

Argument
f File descriptor

Return value
0 if successful, a positive value otherwise.

Further information
Once closed a file descriptor can no longer be used even if the function returns an error code.

Related topics
XPRDfopen.

Fair Isaac Corporation Confidential and Proprietary Information 41

Functions of the XPRD library

XPRDfread

Purpose
Read a block of data from a remote file.

Synopsis
long XPRDfread(XPRDfile f,void *buf, long size);

Arguments
f File descriptor

buf Buffer to return the data

size Size of buffer buf

Return value
0 in case of end of file; the number of bytes read or a negative value in case of error.

Further information
The amount of data read may be smaller than the amount requested: this is not an error.

Related topics
XPRDfopen, XPRDfskip.

Fair Isaac Corporation Confidential and Proprietary Information 42

Functions of the XPRD library

XPRDfskip

Purpose
Skip a block of data from a remote file.

Synopsis
int XPRDfskip(XPRDfile f,int size);

Arguments
f File descriptor

size Number of bytes to skip

Return value
Negative values indicate an error.

Related topics
XPRDfopen, XPRDfread.

Fair Isaac Corporation Confidential and Proprietary Information 43

Functions of the XPRD library

XPRDfwrite

Purpose
Write a block of data to a remote file.

Synopsis
long XPRDfwrite(XPRDfile f,const void *buf, long size);

Arguments
f File descriptor

buf Data to be written

size Size of buffer

Return value
The number of bytes written or a negative value in case of error.

Further information
Output streams are buffered: use XPRDfflush to force actual writing of the data currently stored
in the buffer.

Related topics
XPRDfopen.

Fair Isaac Corporation Confidential and Proprietary Information 44

Functions of the XPRD library

2.5 Connection manager

As soon as the first connection is established the connection manager is started and it is shut
down when all connections have been closed. This manager consists in a background thread
handling the communication protocol required by the Mosel Distributed Framework. The
functions of this section can be used to control this manager: start and stop independently of
active connections as well as handling of messages.

XPRDsetmsgcb Set the message callback. p. 49

XPRDsetmsglev Change the verbosity level of the library. p. 48

XPRDshutdown Shut down the connection manager. p. 47

XPRDstart Start the connection manager. p. 46

Fair Isaac Corporation Confidential and Proprietary Information 45

Functions of the XPRD library

XPRDstart

Purpose
Start the connection manager.

Synopsis
int XPRDstart();

Return value
0 if successful, a positive value otherwise.

Further information

1. This routine allows the user to start the connection manager independently of the active
connections as to keep it running if several connections are performed sequentially.

2. This routine is automatically called by XPRDconnect after a connection succeeds.

3. The system keeps track of the number of times this routine has been called and the function
XPRDshutdown must be called the same number of times in order to actually shut down the
manager.

Related topics
XPRDshutdown.

Fair Isaac Corporation Confidential and Proprietary Information 46

Functions of the XPRD library

XPRDshutdown

Purpose
Shut down the connection manager.

Synopsis
void XPRDshutdown();

Further information

1. Calling this routine shuts down the connection manager previously started by a call to XPRDstart.

2. This routine is automatically called by XPRDdisconnect after the connection has been closed.

Related topics
XPRDstart.

Fair Isaac Corporation Confidential and Proprietary Information 47

Functions of the XPRD library

XPRDsetmsglev

Purpose
Change the verbosity level of the library.

Synopsis
void XPRDsetmsglev(int lev);

Argument
lev New verbosity level

Further information
The default verbosity level is 1 (report only error messages). For debugging purpose this routine
might be used to display more information.

Related topics
XPRDsetmsgcb.

Fair Isaac Corporation Confidential and Proprietary Information 48

Functions of the XPRD library

XPRDsetmsgcb

Purpose
Set the message callback.

Synopsis
void XPRDsetmsgcb(void *ctx, long (*cbmsg)(void*,void *,char *,unsigned long));

Arguments
ctx Context to be passed to the callback routine

cbmsg Message callback. The first argument is always NULL; the second corresponds to ctx, the
two final ones are the message buffer and its length

Further information
By default, messages produced by the library are sent to the default error stream.

Related topics
XPRDsetmsglev.

Fair Isaac Corporation Confidential and Proprietary Information 49

Functions of the XPRD library

2.6 Miscellaneous

XPRDfindxsrvs Search xprmsrv servers on the local network. p. 55

XPRDgetfsrvopt Get configuration settings for XPRDfindxsrvs. p. 54

XPRDgetkeepalive Get KeepAlive settings. p. 52

XPRDgetsshcmd Get the command used for SSH connections. p. 57

XPRDsetfsrvopt Set configuration settings for XPRDfindxsrvs. p. 53

XPRDsetkeepalive Set KeepAlive settings. p. 51

XPRDsetsshcmd Set the command to use for SSH connections. p. 56

Fair Isaac Corporation Confidential and Proprietary Information 50

Functions of the XPRD library

XPRDsetkeepalive

Purpose
Set KeepAlive settings.

Synopsis
int XPRDsetkeepalive(XPRDcontext ctx,int maxfail,int inter);

Arguments
ctx XPRD context

maxfail Maximum number of failures before the link is considered broken (≥ 1; default
value:2)

interval Interval (in seconds) between two activity checks (≥ 4; default value:60)

Return value
0 if successful, 1 otherwise.

Further information

1. In order to verify if the connection between a client and a server is still active, a keep alive
message is sent from the server to the client every interval seconds. A server will consider the
link is down (and close the connection) if no reply has been received after maxfail+1 keepalive
messages. Similarly, a client will close the connection to a server that has not sent any message
for more than interval*(maxfail+1) seconds.

2. Using value 0 for maxfail disables the keepalive mechanism.

3. This routine can only be called before any connection is created.

Related topics
XPRDgetkeepalive.

Fair Isaac Corporation Confidential and Proprietary Information 51

Functions of the XPRD library

XPRDgetkeepalive

Purpose
Get KeepAlive settings.

Synopsis
void XPRDgetkeepalive(XPRDcontext ctx,int *maxfail,int *inter);

Arguments
ctx XPRD context or NULL to get default initial values

maxfail Buffer to return the maximum number of failures before the link is considered
broken

interval Buffer to return the interval (in seconds) between two activity checks

Further information
Value 0 is returned for both maxfail and interval when the keepalive mechanism is disabled.

Related topics
XPRDsetkeepalive.

Fair Isaac Corporation Confidential and Proprietary Information 52

Functions of the XPRD library

XPRDsetfsrvopt

Purpose
Set configuration settings for XPRDfindxsrvs.

Synopsis
void XPRDsetfsrvopt(XPRDcontext ctx,unsigned short port,int nbiter,int delay);

Arguments
ctx XPRD context

port UDP port number

nbiter Number of iterations

delay Maximum wait time (in milliseconds)

Further information
The XPRDfindxsrvs function uses these parameters as follows: a broadcast message is sent to UDP
port port up to nbiter times. For each of these iterations, a maximum of delay milliseconds is
waited for answers from remote servers.

Related topics
XPRDgetfsrvopt, XPRDfindxsrvs.

Fair Isaac Corporation Confidential and Proprietary Information 53

Functions of the XPRD library

XPRDgetfsrvopt

Purpose
Get configuration settings for XPRDfindxsrvs.

Synopsis
void XPRDgetfsrvopt(XPRDcontext ctx,unsigned short *port,int *nbiter,int *delay);

Arguments
ctx XPRD context or NULL to get default settings

port Buffer to return UDP port number or NULL
nbiter Buffer to return the number of iterations or NULL
delay Buffer to return the maximum wait time (in milliseconds) or NULL

Further information
Default values are returned if the context ctx is NULL.

Related topics
XPRDfindxsrvs, XPRDsetfsrvopt.

Fair Isaac Corporation Confidential and Proprietary Information 54

Functions of the XPRD library

XPRDfindxsrvs

Purpose
Search xprmsrv servers on the local network.

Synopsis
int XPRDfindxsrvs(XPRDcontext ctx,int grp,int maxip,unsigned int *addrs);

Arguments
ctx XPRD context or NULL to use default settings

grp Group number of the request

maxip Maximum number of addresses to collect (i.e. size of addrs)

addrs Buffer to return the IP addresses

Return value
The number of IPs stored in addrs or -1 in case of error.

Example
The following example uses this function to find a server and displays its IP address if one is
found:

struct in_addr addr;
if(XPRDfindxsrvs(NULL,1,1,(unsigned int *)&addr)==1)
printf("Server found at %s\n",inet_ntoa(addr));

Further information

1. This function sends a broadcast message over the local network and waits for replies from
running xprmsrv servers. A given server will reply only to selected group numbers: the grp
argument specifies this property.

2. The IP addresses of the hosts having replied to the request are returned via the last argument of
the procedure in the form of unsigned integers (to be cast as a struct in_addr for socket
functions). The maximum number of IPs is fixed by maxip that cannot be larger than the size of
the provided buffer.

Related topics
XPRDgetfsrvopt, XPRDsetfsrvopt.

Fair Isaac Corporation Confidential and Proprietary Information 55

Functions of the XPRD library

XPRDsetsshcmd

Purpose
Set the command to use for SSH connections.

Synopsis
int XPRDsetsshcmd(XPRDcontext ctx,const char *sshcmd);

Arguments
ctx XPRD context

sshcmd Command starting an SSH client connection

Return value
0 if successful, 1 otherwise.

Further information
This routine specifies which command to use for opening an SSH connection to a remote host as
required by the "xssh:" I/O driver. The provided string may contain the following special symbols
that are replaced before the process is started:

%h the target host

%p port to connect to

%f known host file (it is replaced by "-" when no file is provided)

The default value for the parameter is "xprmsrv -sshclt %h -p %p -kh %f"

Related topics
XPRDconnect, XPRDgetsshcmd.

Fair Isaac Corporation Confidential and Proprietary Information 56

Functions of the XPRD library

XPRDgetsshcmd

Purpose
Get the command used for SSH connections.

Synopsis
const char *XPRDgetsshcmd(XPRDcontext ctx);

Argument
ctx XPRD context or NULL to get default settings

Related topics
XPRDsetsshcmd.

Fair Isaac Corporation Confidential and Proprietary Information 57

APPENDIX A

Contacting FICO

FICO provides clients with support and services for all our products. Refer to the following
sections for more information.

Product support

FICO offers technical support and services ranging from self-help tools to direct assistance with a
FICO technical support engineer. Support is available to all clients who have purchased a FICO
product and have an active support or maintenance contract. You can find support contact
information on the Product Support home page (www.fico.com/support).

On the Product Support home page, you can also register for credentials to log on to FICO Online
Support, our web-based support tool to access Product Support 24x7 from anywhere in the world.
Using FICO Online Support, you can enter cases online, track them through resolution, find
articles in the FICO Knowledge Base, and query known issues.

Please include ’Xpress’ in the subject line of your support queries.

Product education

FICO Product Education is the principal provider of product training for our clients and partners.
Product Education offers instructor-led classroom courses, web-based training, seminars, and
training tools for both new user enablement and ongoing performance support. For additional
information, visit the Product Education homepage at www.fico.com/en/product-training or
email producteducation@fico.com.

Product documentation

FICO continually looks for new ways to improve and enhance the value of the products and
services we provide. If you have comments or suggestions regarding how we can improve this
documentation, let us know by sending your suggestions to techpubs@fico.com.

Fair Isaac Corporation Confidential and Proprietary Information 58

Contacting FICO

Sales and maintenance

USA, CANADA AND ALL AMERICAS

Email: XpressSalesUS@fico.com

WORLDWIDE

Email: XpressSalesUK@fico.com

Tel: +44 207 940 8718
Fax: +44 870 420 3601

Xpress Optimization, FICO
FICO House
International Square
Starley Way
Birmingham B37 7GN
UK

Related services

Strategy Consulting: Included in your contract with FICO may be a specified amount of
consulting time to assist you in using FICO Optimization Modeler to meet your business needs.
Additional consulting time can be arranged by contract.

Conferences and Seminars: FICO offers conferences and seminars on our products and services.
For announcements concerning these events, go to www.fico.com or contact your FICO account
representative.

About FICO

FICO (NYSE:FICO) delivers superior predictive analytics solutions that drive smarter decisions. The
company’s groundbreaking use of mathematics to predict consumer behavior has transformed
entire industries and revolutionized the way risk is managed and products are marketed. FICO’s
innovative solutions include the FICO® Score—the standard measure of consumer credit risk in
the United States—along with industry-leading solutions for managing credit accounts,
identifying and minimizing the impact of fraud, and customizing consumer offers with pinpoint
accuracy. Most of the world’s top banks, as well as leading insurers, retailers, pharmaceutical
companies, and government agencies, rely on FICO solutions to accelerate growth, control risk,
boost profits, and meet regulatory and competitive demands. FICO also helps millions of
individuals manage their personal credit health through www.myfico.com. Learn more at
www.fico.com. FICO: Make every decision countTM.

Fair Isaac Corporation Confidential and Proprietary Information 59

Index

B
bim, 23
binary

model file, 23

C
cloud computing, 2
comment

user, 22
compile

model, 22
connection banner, 18
connection manager, 45

shut down, 47
start, 46

connection string, 13
context, 5

D
debugging, 22
default streams, 21

E
error stream, 21
event

abort wait, 12
drop next, 10
get next, 9
send, 36
wait for, 11

event queue, 8
execute

model, 28

F
file handling, 2
file manager, 2

I
input stream, 21

K
keepalive, 51, 52

L
load

model, 25

M
master model, 2
message callback, 49
message level, 48
model

compile, 22
data pointer, 31, 37
exit code, 32
get Mosel instance, 26
load, 25
number, 33
reset, 27
run, 28
status, 30
stop, 29
unload, 35

model file
binary, 23

model object, 24
model parameters, 28
Mosel Distributed Framework, 1
Mosel instance, 13

check connection, 16
connection banner, 18
create, 14
get, 26
get context, 17
ID, 19
release, 15
system info, 20

O
output stream, 21

R
remote file

close, 41
flush, 39
open, 40
read, 42
skip, 43
write, 44

remote file access, 38
resetting model, 27
run

model, 28

S
source file, 22
stream

set, 21
strip symbols, 22
symbol

strip, 22

T
tracing, 22

Fair Isaac Corporation Confidential and Proprietary Information 60

Index

U
unload

model, 35
user comment, 22

X
XPRD context, 5

create, 6
release, 7

XPRD_F_APPEND, 40
XPRD_F_BINARY, 40
XPRD_F_ERROR, 21
XPRD_F_INPUT, 40
XPRD_F_LINBUF, 21, 40
XPRD_F_OUTPUT, 40
XPRD_F_READ, 21
XPRD_F_WRITE, 21
XPRD_RT_ERROR, 30
XPRD_RT_FDCLOSED, 30
XPRD_RT_I/OERR, 30
XPRD_RT_MATHERR, 30
XPRD_RT_OK, 30
XPRD_RT_RUNNING, 30
XPRD_RT_STOP, 30
XPRD_SYS_ARCH, 20
XPRD_SYS_NAME, 20
XPRD_SYS_NODE, 20
XPRD_SYS_PROC, 20
XPRD_SYS_REL, 20
XPRD_SYS_VER, 20
XPRDabortwait, 12
XPRDbanner, 18
XPRDcompmod, 22
XPRDcompmodsec, 22
XPRDconnect, 14
XPRDconnected, 16
XPRDdisconnect, 15
XPRDdropevent, 10
XPRD_EVENT_END, 28
XPRDfclose, 41
XPRDfflush, 39
XPRDfindxsrvs, 55
XPRDfinish, 7
XPRDfopen, 40
XPRDfread, 42
XPRDfskip, 43
XPRDfwrite, 44
XPRDgetdata, 31
XPRDgetevent, 9
XPRDgetexitcode, 32
XPRDgetfsrvopt, 54
XPRDgetkeepalive, 52
XPRDgetmosel, 26
XPRDgetnumber, 33
XPRDgetrmtid, 34
XPRDgetsshcmd, 57
XPRDgetstatus, 30
XPRDgetxprd, 17
XPRDinit, 6
XPRDinstid, 19

XPRDloadmod, 25
XPRDloadmodsec, 25
XPRDmosel, 13
XPRDqueueempty, 8
XPRDresetmod, 27
XPRDrunmod, 28
XPRDsendevent, 36
XPRDsetdata, 37
XPRDsetdefstream, 21
XPRDsetfsrvopt, 53
XPRDsetkeepalive, 51
XPRDsetmsgcb, 49
XPRDsetmsglev, 48
XPRDsetsshcmd, 56
XPRDshutdown, 47
XPRDstart, 46
XPRDstoprunmod, 29
XPRDsysinfo, 20
XPRDunloadmod, 35
XPRDwaitevent, 11

Fair Isaac Corporation Confidential and Proprietary Information 61

	Introduction
	Overview
	File managers

	Functions of the XPRD library
	Contexts and event handling
	XPRDinit
	XPRDfinish
	XPRDqueueempty
	XPRDgetevent
	XPRDdropevent
	XPRDwaitevent
	XPRDabortwait

	Mosel instances management
	XPRDconnect
	XPRDdisconnect
	XPRDconnected
	XPRDgetxprd
	XPRDbanner
	XPRDinstid
	XPRDsysinfo
	XPRDsetdefstream
	XPRDcompmod, XPRDcompmodsec

	Model management
	XPRDloadmod, XPRDloadmodsec
	XPRDgetmosel
	XPRDresetmod
	XPRDrunmod
	XPRDstoprunmod
	XPRDgetstatus
	XPRDgetdata
	XPRDgetexitcode
	XPRDgetnumber
	XPRDgetrmtid
	XPRDunloadmod
	XPRDsendevent
	XPRDsetdata

	Remote file access
	XPRDfflush
	XPRDfopen
	XPRDfclose
	XPRDfread
	XPRDfskip
	XPRDfwrite

	Connection manager
	XPRDstart
	XPRDshutdown
	XPRDsetmsglev
	XPRDsetmsgcb

	Miscellaneous
	XPRDsetkeepalive
	XPRDgetkeepalive
	XPRDsetfsrvopt
	XPRDgetfsrvopt
	XPRDfindxsrvs
	XPRDsetsshcmd
	XPRDgetsshcmd

	Appendix
	Contacting FICO
	Product support
	Product education
	Product documentation
	Sales and maintenance
	Related services
	About FICO

	Index

