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Preface

‘Getting Started’ is a quick and easy-to-understand introduction to modeling and solving
different types of optimization problems with FICOTM Xpress. It shows how Linear, Mixed-Integer,
and Quadratic Programming problems are formulated with the Mosel language and solved by
Xpress-Optimizer. We work with these Mosel models by means of the graphical user interface
Xpress-IVE. Two alternatives to using this high-level language are also discussed: a model may be
defined in a programming language environment using the model builder library Xpress-BCL or
directly input into the Optimizer in the form of a matrix.

Throughout this book we employ variants of a single problem, namely optimal portfolio
selection. To readers who are interested in other types of optimization problems we recommend
the book ‘Applications of Optimization with Xpress-MP’ (Dash Optimization, 2002), see also

http://optimization.fico.com/product-information/

This book shows how to formulate and solve a large number of application problems with Xpress.

A short introduction such as the present book highlights certain features but necessarily remains
incomplete. The interested reader is directed to various other documents available from the
Xpress website, such as the user guides and reference manuals for the various pieces of software
of the FICOTM Xpress suite (Optimizer, Mosel language, Mosel modules, etc.) and the collection of
white papers on modeling topics. A list of the available documentation is given in the appendix.

Whom this book is intended for

This book is an ideal starting point for software evaluators as it gives an overview of the various
Xpress products and shows how to get up to speed quickly through experimenting with the
models discussed via a high-level language used in a graphical environment.

Starting from a simple linear model, every chapter adds new features to it. First time users are
taken in small steps from the textual description, via the mathematical model to a complete
application (Chapter 9) or the implementation of a solution heuristic that involves some more
advanced optimization tasks (Chapter 8).

The variety of topics covered may also help occasional users to quickly refresh their knowledge of
Mosel, IVE, BCL and the Optimizer.

How to read this book

For a complete overview and introduction to modeling and solving with the FICOTM Xpress
product suite, we recommend reading the entire document. However, readers who are only
interested in certain topics, may well skip certain parts or chapters as shown in the following
diagram.
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Figure 1: Suggested flow through the book

Using the Mosel language with IVE

The approach presented in the first part of this book is recommended for first time users, novices
to Mathematical Programming, and users who wish to develop and deploy new models quickly,
supported by graphical displays for problem and solution analysis.

For example, if you wish to develop a Linear Programming (LP) model and embed it into some
existing application, you should read the first four chapters, followed by Chapter 9 on embedding
Mosel models.

To find out how to model and solve Quadratic Programming (QP) problems with Xpress, you
should read at least Chapters 1-3, the beginning of Chapter 4 and then Chapter 7; for Mixed
Integer Quadratic Programming (MIQP) also include Chapter 6 on Mixed Integer Programming
(MIP).

To see how you may implement your own solution algorithms and heuristics in the Mosel
language, we suggest reading Chapters 1-3, the beginning of Chapter 4, followed by Chapter 6
on MIP and then Chapter 8 on Heuristics.

Working in a programming language environment

Users who wish to develop their entire application in a programming language environment
have two options, using the model builder library BCL or inputting their problem directly into
Xpress-Optimizer.

Users who are looking for modeling support whilst model execution speed is a decisive factor in
their choice of the tool should look at the model builder library BCL. Due to the modeling objects
defined by BCL, the resulting code remains relatively close to the algebraic model and is easy to
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maintain. BCL supports modeling of LP, MIP, and QP problems (Chapters 10-12). Model input with
BCL may be combined with direct calls to Xpress-Optimizer to define solution algorithms as
shown with the example in Chapter 13.

The direct access to the Optimizer (discussed in the last part) is provided mainly for low-level
integration with applications that possess their own matrix generation routines (Chapters 15-17
for LP, MIP, and QP problems), or to solve matrices given in standard format (MPS or LP) that were
generated externally (Chapter 14). The possibility to directly access very specific features of the
Optimizer is also appreciated by advanced users, mostly in the domain of research, who
implement their own algorithms involving the solution of LP, MIP, or QP problems.

Preface c©Copyright 2003–2014 Fair Isaac Corporation. All rights reserved. page 3



CHAPTER 1

Introduction

1.1 Mathematical Programming

Mathematical Programming is a technique of mathematical optimization. Many real-world
problems in such different areas as industrial production, transport, telecommunications, finance,
or personnel planning may be cast into the form of a Mathematical Programming problem: a set
of decision variables, constraints over these variables and an objective function to be maximized
or minimized.

Mathematical Programming problems are usually classified according to the types of the decision
variables, constraints, and the objective function.

A well-understood case for which efficient algorithms (Simplex, interior point) are known
comprises Linear Programming (LP) problems. In this type of problem all constraints and the
objective function are linear expressions of the decision variables, and the variables have
continuous domains—i.e., they can take on any, usually non-negative, real values. Luckily, many
application problems fit into this category. Problems with hundreds of thousands, or even
millions of variables and constraints are routinely solved with commercial Mathematical
Programming software like Xpress-Optimizer.

Researchers and practitioners working on LP quickly found that continuous variables are
insufficient to represent decisions of a discrete nature (‘yes’/‘no’ or 1,2,3,...). This observation lead
to the development of Mixed Integer Programming (MIP) where constraints and objective
function are linear just as in LP and variables may have either discrete or continuous domains. To
solve this type of problems, LP techniques are coupled with an enumeration (known as
Branch-and-Bound) of the feasible values of the discrete variables. Such enumerative methods
may lead to a computational explosion, even for relatively small problem instances, so that it is
not always realistic to solve MIP problems to optimality. However, in recent years, continuously
increasing computer speed and even more importantly, significant algorithmic improvements
(e.g. cutting plane techniques and specialized branching schemes) have made it possible to tackle
ever larger problems, modeling ever more exactly the underlying real-world situations.

Another class of problems that is relatively well-handled are Quadratic Programming (QP)
problems: these differ from LPs in that they have quadratic terms in the objective function (the
constraints remain linear). The decision variables may be continuous or discrete, in the latter case
we speak of Mixed Integer Quadratic Programming (MIQP) problems. In Chapters 7 and 12 of this
book we show examples of both cases.

More difficult is the case of non-linear constraints or objective functions, Non-linear
Programming (NLP) problems. Frequently heuristic or approximation methods are employed to
find good (locally optimal) solutions. One method for solving problems of this type is Successive
Linear Programming (SLP); such a solver forms part of the FICOTM Xpress suite. However, in this
book we shall not enlarge on this topic.

Building a model, solving it and then implementing the ‘answers’ is not generally a linear process.
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We often make mistakes in our modeling which are usually only detected by the optimization
process, where we could get answers that were patently wrong (e.g. unbounded or infeasible) or
that do not accord with our intuition. If this happens we are forced to reflect further about the
model and go into an iterative process of model refinement, re-solution and further analyses of
the optimum solution. During this process it is quite likely that we will add extra constraints,
perhaps remove constraints that we were mislead into adding, correct erroneous data or even be
forced to collect new data that we had previously not considered necessary.

Modeling

Solving

Analysis

Description Deployment

Figure 1.1: Scheme of an optimization project

This books takes the reader through all these steps: from the textual description we develop a
mathematical model which is then implemented and solved. Various improvements, additions
and reformulations are suggested in the following chapters, including an introduction of the
available means to support the analysis of the results. The deployment of a Mathematical
Programming application typically includes its embedding into other applications to turn it into a
part of a company’s information system.

1.2 Xpress product suite

Arising from different users’ needs and preferences, there are several ways of working with the
modeling and optimization tools that form the FICOTM Xpress product suite:

1. High-level language: the Xpress-Mosel language allows the user to define his models in a
form that is close to algebraic notation and to solve them in the same environment. Mosel’s
programming facilities also make it possible to implement solution algorithms directly in
this high-level language. Mosel may be used as a standalone program or through the
Xpress-IVE development environment that provides, amongst many other tools, graphical
displays of solution information.
Via the concept of modules the Mosel environment is entirely open to additions; modules of
the Xpress distribution include access to solvers (Xpress-Optimizer for LP, MIP, and QP,
Xpress-SLP, and Xpress-Kalis), data handling facilities (e.g. via ODBC) and access to system
functions. In addition, via the Mosel Native Interface users may define their own modules to
add new features to the Mosel language according to their needs (e.g. to implement
problem-specific data handling, or connections to external solvers or solution algorithms).

2. Libraries for embedding: two different options are available for embedding mathematical
models into large applications. A model developed using the Mosel language may be
executed and accessed from a programming language environment (e.g. C, C++, Java, etc.)
through the Mosel libraries; certain modules also provide direct access to their functions
from a programming language environment.
The second possibility consists of developing a model directly in a programming language
with the help of the model builder library Xpress-BCL. BCL allows the user to formulate his
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Figure 1.2: Xpress product suite

models with objects (decision variables, constraints, index sets) similar to those of a
dedicated modeling language.
All libraries are available for C, C++, Java, C#, and Visual Basic (VB).

3. Direct access to solvers: on the lowest, most immediate level, it is possible to work directly
with the Xpress-Optimizer or Xpress-SLP in the form of a library or a standalone program.
This facility may be useful for embedding the Optimizer into applications that possess their
own, dedicated matrix generation routines.
Advanced Xpress users may wish to employ special features of the Optimizer that are not
available through the different interfaces, possibly using a matrix that has previously been
generated by Mosel or BCL.

Of the three above mentioned approaches, a high-level language certainly provides the
easiest-to-understand access to Mathematical Programming. So in the first and largest part of this
book we show how to define and solve problems with the Xpress-Mosel language, and also how
the resulting models may be embedded into applications using the Mosel libraries or
Optimization Modeler. We work with Mosel models in the graphical user interface Xpress-IVE,
exploiting its facilities for debugging and solution analysis and display.

In the reminder of this book we show how to formulate and solve Mathematical Programming
problems directly in a programming language environment. This may be done with modeling
support from BCL or directly using the Xpress-Optimizer library. With BCL, models can be
implemented in a form that is relatively close to their algebraic formulation and so are quite easy
to understand and to maintain. We discuss BCL implementations of the same example problems
as used with Mosel.

The last part of this book explains how problems may be input directly into the Optimizer, either
in the form of matrices (possibly generated by another tool such as Mosel or BCL) that are read
from file, or by specifying the problem matrix coefficient-wise directly in the application
program. The facility of working directly with the Optimizer library is destinated at embedders
and advanced Xpress users. It is not recommendable as a starting point for the novice in
Mathematical Programming.

1.2.1 Note on product versions

The Mosel examples in this book have been updated to the FICOTM Xpress Release 7.7 (Mosel
3.6.0); IVE screenshots have been taken with Release 7.0.1 (IVE 1.20.05). The Optimization
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Modeler examples have been developed with Xpress Release 7.8. The BCL examples are using BCL
4.4.0 that is distributed with Xpress Release 7.2. The Optimizer examples have been developed
using the Xpress Release 7.1 (Optimizer 21.0.3). If the examples are run with other product
versions the output obtained may look different. In particular, improvements to the algorithms or
modifications to the default settings in Xpress-Optimizer may influence the behavior of the LP
search or the shape of the MIP branching trees. The IVE interface may also undergo slight
changes in future releases as new features are added, but this will not affect the actions
described in this book.
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CHAPTER 2

Building models

This chapter shows in detail how the textual description of a real world problem is converted into
a mathematical model. We introduce an example problem, optimal portfolio selection, that will
be used throughout this book.

Though not requiring any prior experience of Mathematical Programming, when formulating the
mathematical models we assume that the reader is comfortable with the use of symbols such as x
or y to represent unknown quantities, and the use of this sort of variable in simple linear
equations and inequalities, for example:

x + y ≤ 6

which says that ‘the quantity represented by x plus the quantity representetd by y must be less
than or equal to six’.

You should also be familiar with the idea of summing over a set of variables. For example, if
producei is used to represent the quantity produced of product i then the total production of all
items in the set ITEMS can be written as: ∑

i∈ITEMS

producei

This says ‘sum the produced quantities producei over all products i in the set ITEMS’.

Another common mathematical symbol that is used in the text is the all-quantifier ∀ (read ‘for
all’): if ITEMS consists in the elements 1, 4, 7, 9 then writing

∀i ∈ ITEMS : producei ≤ 100

is a shorthand for

produce1 ≤ 100

produce4 ≤ 100

produce7 ≤ 100

produce9 ≤ 100

Computer based modeling languages, and in particular the language we use, Mosel, closely
mimic the mathematical notation an analyst uses to describe a problem. So provided you are
happy using the above mathematical notation the step to using a modeling language will be
straightforward.
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2.1 Example problem

An investor wishes to invest a certain amount of money. He is evaluating ten different securities
(‘shares’) for his investment. He estimates the return on investment for a period of one year. The
following table gives for each share its country of origin, the risk category (R: high risk, N: low
risk) and the expected return on investment (ROI). The investor specifies certain constraints. To
spread the risk he wishes to invest at most 30% of the capital into any share. He further wishes to
invest at least half of his capital in North-American shares and at most a third in high-risk shares.
How should the capital be divided among the shares to obtain the highest expected return on
investment?

Table 2.1: List of shares with countries of origin and estimated return on investment

Number Description Origin Risk ROI

1 treasury Canada N 5

2 hardware USA R 17

3 theater USA R 26

4 telecom USA R 12

5 brewery UK N 8

6 highways France N 9

7 cars Germany N 7

8 bank Luxemburg N 6

9 software India R 31

10 electronics Japan R 21

To construct a mathematical model, we first identify the decisions that need to be taken to
obtain a solution: in the present case we wish to know how much of every share to take into the
portfolio. We therefore define decision variables fracs that denote the fraction of the capital
invested in share s. That means, these variables will take fractional values between 0 and 1
(where 1 corresponds to 100% of the total capital). Indeed, every variable is bounded by the
maximum amount the investor wishes to spend per share: at most 30% of the capital may be
invested into every share. The following constraint establishes these bounds on the variables fracs

(read: ‘for all s in SHARES ...’).
∀s ∈ SHARES : 0 ≤ fracs ≤ 0. 3

In the mathematical formulation, we write SHARES for the set of shares that the investor may
wish to invest in and RETs the expected ROI per share s. NA denotes the subset of the shares that
are of North-American origin and RISK the set of high-risk values.

The investor wishes to spend all his capital, that is, the fractions spent on the different shares
must add up to 100%. This fact is expressed by the following equality constraint:∑

s∈SHARES

fracs = 1

We now also need to express the two constraints that the investor has specified: At most one
third of the values may be high-risk values—i.e., the sum invested into this category of shares
must not exceed 1/3 of the total capital: ∑

s∈RISK

fracs ≤ 1 / 3

The investor also insists on spending at least 50% on North-American shares:∑
s∈NA

fracs ≥ 0. 5
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These two constraints are inequality constraints.

The investor’s objective is to maximize the return on investment of all shares, in other terms, to
maximize the following sum: ∑

s∈SHARES

RETs · fracs

This is the objective function of our mathematical model.

After collecting the different parts, we obtain the following complete mathematical model
formulation:

maximize
∑

s∈SHARES

RETs · fracs∑
s∈RISK

fracs ≤ 1 / 3

∑
s∈NA

fracs ≥ 0. 5∑
s∈SHARES

fracs = 1

∀s ∈ SHARES : 0 ≤ fracs ≤ 0. 3

In the next chapter we shall see how this mathemetical model is transformed into a Mosel model
that is then solved with Xpress-Optimizer. In Chapter 10 we show how to use BCL for this purpose
and Chapter 15 discusses how to input this model directly into the Optimizer without modeling
support.
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CHAPTER 3

Inputting and solving a
Linear Programming problem

In this chapter we take the example formulated in Chapter 2 and show how to transform it into a
Mosel model which is solved as an LP using Xpress-IVE. More precisely, this involves the following
steps:

� starting up Xpress-IVE,

� creating and saving the Mosel file,

� using the Mosel language to enter the model,

� correcting errors and debugging the model,

� solving the model and understanding the LP optimization displays in IVE,

� viewing and verifying the solution and understanding the solution in terms of the real
world problem instance.

Chapter 10 shows how to formulate and solve the same example with BCL and in Chapter 15 the
problem is input and solved directly with Xpress-Optimizer.

3.1 Starting up Xpress-IVE and creating a new model

We shall develop and execute our Mosel model with the graphical environment Xpress-IVE. If you
have followed the standard installation procedure for Xpress-IVE, start the program by a double
click onto the icon on the desktop or select Start� Programs� FICO� Xpress� Xpress-IVE.
Otherwise, you may also start up IVE by typing ive in a DOS window or, if you have installed any
model examples, by double clicking onto a model file (file with extension .mos).

Xpress-IVE opens with a window that is subdivided into several panes:
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Figure 3.1: IVE at startup

At the top, we have the menu and tool bars. The window on the left is the project bar, at the
bottom is located the info bar, and the right window is the run bar. You may blend out these
bars using the View menu. To restore the original layout select View� Repair Window Layout or

the restore button: . The central, grey window is the place where the working file will be
displayed.

To create a new model file select File� New or alternatively, click on the first button of the tool

bar: This will open a dialog window where you can choose a directory and enter the name of
the new file. We shall give it the name foliolp, the extension .mos for ‘Mosel file’ will be
appended automatically. Click Save to confirm your choice. The central window of IVE has now
turned white and the cursor is positioned at its top line, ready for you to enter the model into the
input template displayed by IVE.

3.2 LP model

The mathematical model in the previous chapter may be transformed into the following Mosel
model entered into IVE:

model "Portfolio optimization with LP"
uses "mmxprs" ! Use Xpress-Optimizer

declarations
SHARES = 1..10 ! Set of shares
RISK = {2,3,4,9,10} ! Set of high-risk values among shares
NA = {1,2,3,4} ! Set of shares issued in N.-America
RET: array(SHARES) of real ! Estimated return in investment

frac: array(SHARES) of mpvar ! Fraction of capital used per share
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end-declarations

RET:: [5,17,26,12,8,9,7,6,31,21]

! Objective: total return
Return:= sum(s in SHARES) RET(s)*frac(s)

! Limit the percentage of high-risk values
sum(s in RISK) frac(s) <= 1/3

! Minimum amount of North-American values
sum(s in NA) frac(s) >= 0.5

! Spend all the capital
sum(s in SHARES) frac(s) = 1

! Upper bounds on the investment per share
forall(s in SHARES) frac(s) <= 0.3

! Solve the problem
maximize(Return)

! Solution printing
writeln("Total return: ", getobjval)
forall(s in SHARES) writeln(s, ": ", getsol(frac(s))*100, "%")

end-model

Let us now try to understand what we have just written.

3.2.1 General structure

Every Mosel program starts with the keyword model, followed by a model name chosen by the
user. The Mosel program is terminated with the keyword end-model.

All objects must be declared in a declarations section, unless they are defined unambiguously
through an assignment. For example,

Return:= sum(s in SHARES) RET(s)*frac(s)

defines Return as a linear constraint and assigns to it the expression

sum(s in SHARES) RET(s)*frac(s)

There may be several such declarations sections at different places in a model.

In the present case, we define three sets, and two arrays:

� SHARES is a so-called range set—i.e., a set of consecutive integers (here: from 1 to 10).

� RISK and NA are simply sets of integers.

� RET is an array of real values indexed by the set SHARES, its values are assigned after the
declarations.

� frac is an array of decision variables of type mpvar, also indexed by the set SHARES. These
are the decision variables in our model.

The model then defines the objective function, two linear inequality constraints and one equality
constraint and sets upper bounds on the variables.

As in the mathematical model, we use a forall loop to enumerate all the indices in the set
SHARES.
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3.2.2 Solving

With the procedure maximize, we call Xpress-Optimizer to maximize the linear expression
Return. As Mosel is itself not a solver, we specify that Xpress-Optimizer is to be used with the
statement

uses "mmxprs"

at the begin of the model (the module mmxprs is documented in the ‘Mosel Language Reference
Manual’).

Instead of defining the objective function Return separately, we could just as well have written

maximize(sum(s in SHARES) RET(s)*frac(s))

3.2.3 Output printing

The last two lines print out the value of the optimal solution and the solution values for all
variables.

To print an additional empty line, simply type writeln (without arguments). To write several
items on a single line use write instead of writeln for printing the output.

3.2.4 Formating

Indentation, spaces, and empty lines in our model have been added to increase readability. They
are skipped by Mosel.

Line breaks: It is possible to place several statements on a single line, separating them by
semicolons, like

RISK = {2,3,4,9,10}; NA = {1,2,3,4}

But since there are no special ‘line end’ or continuation characters, every line of a statement that
continues over several lines must end with an operator (+, >=, etc.) or characters like ‘,’ that
make it obvious that the statement is not terminated.

As shown in the example, single line comments in Mosel are preceded by !. Comments over
multiple lines start with (! and terminate with !).

3.3 Correcting errors and debugging a model

Having entered the model printed in the previous section, we now wish to execute it, that is,
solve the optimization problem and retrieve the results. Choose Build� Run or alternatively, click

on the run button:

At a first attempt to run a model, you are likely to see the message ‘Compilation failed. Please
check for errors.’ The bottom window displays the error messages generated by Mosel, for
instance as shown in the following figure (Figure 3.2).

When typing in the model from the previous section (there printed in its correct form), we have
deliberately introduced some common mistakes that we shall now correct—see the example file
foliolperr.mos for the erroneous model. Clicking on an error message will highlight the
corresponding line in the model.
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Figure 3.2: Info bar with error messages

The first message:

error 100: syntax error

takes us to the line

RET:: [5,17,26,12,8,9,7,6,31,21

We need to add the closing bracket to terminate the definition of RET (if the definition continues
on the next line, we need to add a comma at the end of this line to indicate continuation).

The next messages that appear after re-running the model:

error 100: syntax error before ‘=’
error 123: ‘Return’ is not defined
warning 121: Statement with no effect

take us to the line

Return = sum(s in SHARES) RET(s)*frac(s)

Warnings will not hinder the model from being executed, but since the Mosel compiler tells us
that this line has no meaning, something must be wrong. Finding the error here requires taking a
very close look: instead of := we have used =. Since Return should have been defined by
assigning it the sum on the right side, this statement now does not have any meaning.

After correcting this error, we try to run the model again, but we are still left with one error
message:

error 123: ‘maximize’ is not defined

located in the line
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Figure 3.3: LP matrix display

maximize(Return)

The procedure maximize is defined in the module mmxprs but we have forgotten to add the line

uses "mmxprs"

at the beginning of the Mosel model. After adding this line, the model compiles correctly.

A useful functionality to quickly see what is provided by a module is provided in the form of the

module browser: select Modules� List available modules or alternatively, click on the button .
This opens a window with the list of modules available in your Xpress installation and also allows
you to check in detail the functionality (subroutines, types, constants, etc.) added by each module
to the Mosel language.

If you do not remember the correct name of a Mosel keyword while typing in a model, then you
may use the code completion feature of the IVE editor: hold down the CRTL and spacebar keys to
get a list of keywords from which you may select the desired one.

3.3.1 Debugging

If a model is correct from Mosel’s point of view, this does of course not guarantee that it really
does what we would like it to do. For instance, we may have forgotten to initialize data, or
variables and constraints are not created correctly (they may be part of complex expressions,
including logical tests etc.). To check what has indeed been generated by Mosel, we may pause
the execution of the model immediately before it is solved. Select Build� Options or

alternatively, click on the run options button: In the dialog window that gets displayed, under
Matrix visualization check Show original matrix and confirm with Apply. When we now execute
the model, it will generate a graphical matrix display in the Run bar on the right side of the IVE
workspace (Figure 3.3). Select the tab Matrix at the bottom of the Run bar and then Graphical
original at its top to view the display.

The upper part shows the general structure and the lower part allows to zoom in onto single
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coefficients, indicating their values. The display uses blue color for positive coefficients, red for
negative and white or grey for zero-valued coefficients. One may recognize the three constraints
of our model: note that the constraints in matrices always appear in inverse order from their
definition in the model.

Another change to the screen display may be observed in the left window of the workspace: it
now displays all entities defined in the model. Click on the ‘+’ signs to view the full information
(Figure 3.4).

Figure 3.4: Entity display

When moving the cursor slowly over the various entities, their current contents and status are
displayed. This allows you, for instance, to check the contents of index sets and data arrays and to
see that the array frac consists indeed of 10 variables. You can also double-click on an entity to
obtain a new window with the full contents of the entity value (useful especially for large arrays).
In addition, when clicking on an entity its occurences in the editor are shown in the info bar.

To inspect models during their execution you may use the IVE debugger. Select Debug�

Start/Continue or click on the button to start or stop the debugger. The Debug menu entries
and the debugger buttons allow you to perform standard debugging tasks, such as setting

breakpoints (button ), running a model up to the cursor position (button ), or executing it

step-by-step (buttons and ).

3.4 Solving, optimization displays, and viewing the solution

As mentioned in the previous section, to execute our model we have to select Build� Run or

alternatively, click on the run button: After the successful execution of our model the screen
display changes to the following (Figure 3.5).

The bottom window contains the log of the Mosel execution, the right window displays solution
information and the left window displays all model entities. Choose the tab Output/input under
the right window to see the output printed by our program:

Total return: 14.0667
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Figure 3.5: Display after model execution

1: 30%
2: 0%
3: 20%
4: 0%
5: 6.66667%
6: 30%
7: 0%
8: 0%
9: 13.3333%
10: 0%

This means, that the maximum return of 14.0667 is obtained with a portfolio consisting of shares
1, 3, 5, 6, and 9. 30% of the total amount are spent in shares 1 and 6 each, 20% in 3, 13.3333% in
9 and 6.6667% in 5. It is easily verified that all constraints are indeed satisfied: we have 50% of
North-American shares (1 and 3) and 33.33% of high-risk shares (3 and 9).

Now select the tab Stats to obtain the detailed LP optimization information shown in Figure 3.6.

The upper part of the window contains some statistics about the matrix, in its original and in
presolved form (presolving a problem means applying some numerical methods to simplify or
transform it). The center part tells us which LP algorithm has been used (Simplex), and the
number of iterations and total time needed by the algorithm. The lower part lists the time
overheads caused by the various displays in IVE. Since this problem is very small, it is solved almost
instantaneously.

To see more detailed solution information than what is printed by our model, go to the entities
display in the left hand side window, and expand the decision variables and constraints by
clicking on the ‘+’ signs. When moving the cursor slowly over the different entities, the full
solution information gets displayed (for large arrays double-click on the entity to obtain a new
window with the full contents of the entity value). Note that under ‘constraints’ only the
objective function is listed since this is the only constraint that has been assigned a name.
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Figure 3.6: LP status display

3.4.1 String indices

To make the output of the model more easily understandable, it may be a good idea to replace
the numerical indices by string indices.

In our model, we replace the three declaration lines

SHARES = 1..10
RISK = {2,3,4,9,10}
NA = {1,2,3,4}

by the following lines:

SHARES = {"treasury", "hardware", "theater", "telecom", "brewery",
"highways", "cars", "bank", "software", "electronics"}

RISK = {"hardware", "theater", "telecom", "software", "electronics"}
NA = {"treasury", "hardware", "theater", "telecom"}

And in the initialization of the array RET we now need to use the indices:

RET::(["treasury", "hardware", "theater", "telecom", "brewery",
"highways", "cars", "bank", "software", "electronics"])[

5,17,26,12,8,9,7,6,31,21]

No other changes in the model are required. We save the modified model as foliolps.mos.

The solution output then prints as follows which certainly makes the interpretation of the result
easier and more immediate:

Total return: 14.0667
treasury: 30%
hardware: 0%
theater: 20%
telecom: 0%
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brewery: 6.66667%
highways: 30%
cars: 0%
bank: 0%
software: 13.3333%
electronics: 0%

Of course, the entity display also works with these string names:

Figure 3.7: Entity display
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CHAPTER 4

Working with data

In this chapter we introduce some basic data handling facilities of Mosel:

� the initializations block for reading and writing data in Mosel-specific format,

� data output to a file in free format,

� parameterization of files names and numerical constants, and

� some output formatting.

4.1 Data input from file

With Mosel, there are several different ways of reading and writing data from and to external
files. For simplicity’s sake we shall limit the discussion here to files in text format. Mosel also
provides specific modules to exchange data with spreadsheets and databases, for instance using
an ODBC connection, but this is beyond the scope of this book and the interested reader is
refered to the documentation of these modules (see the Mosel Language Reference Manual and
the whitepaper Using ODBC and other database interfaces with Mosel).

The data file folio.dat that we are going to work with has the following contents:

! Data file for ‘folio*.mos’

RET: [("treasury") 5 ("hardware") 17 ("theater") 26 ("telecom") 12
("brewery") 8 ("highways") 9 ("cars") 7 ("bank") 6
("software") 31 ("electronics") 21 ]

RISK: ["hardware" "theater" "telecom" "software" "electronics"]

NA: ["treasury" "hardware" "theater" "telecom"]

Just as in model files, single-line comments preceded by ! may be used in data files. Every data
entry is labeled with the name given to the corresponding entity in the model. Data items may be
separated by blanks, tabulations, line breaks, or commas.

We modify the Mosel model from Chapter 3 as follows:

declarations
SHARES: set of string ! Set of shares
RISK: set of string ! Set of high-risk values among shares
NA: set of string ! Set of shares issued in N.-America
RET: array(SHARES) of real ! Estimated return in investment
end-declarations

initializations from "folio.dat"
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RISK RET NA
end-initializations

declarations
frac: array(SHARES) of mpvar ! Fraction of capital used per share
end-declarations

As opposed to the previous model foliolp.mos, all index sets and the data array are now
created as dynamic objects: their size is not known at their creation and they are initialized later
with data from the file folio.dat. Optionally, after the initialization from file, we may finalize
the sets to make them static. This will make more efficient the handling of any arrays declared
later on and indexed by these sets, and more importantly, this allows Mosel to check for ‘out of
range’ errors that cannot be detected if the sets are dynamic.

finalize(SHARES); finalize(RISK); finalize(NA)

Notice that we do not initialize explicitly the set SHARES, it is filled automatically when the array
RET is read. Notice further that we only declare the decision variables after initializing the data,
and hence when their index set is known.

4.2 Formated data output to file

Just like initializations from in the previous section, initializations to also exists in
Mosel to write out data in a standardized format. However, if we wish to redirect to a file exactly
the text that is currently displayed in the ‘Output’ window of IVE, then we simply need to
surround the printing of this text by calls to the procedures fopen and fclose:

fopen("result.dat", F_OUTPUT)
writeln("Total return: ", getobjval)
forall(s in SHARES) writeln(s, ": ", getsol(frac(s))*100, "%")
fclose(F_OUTPUT)

The first argument of fopen is the name of the output file, the second indicates in which mode
to open it: with the settings shown above, at every re-execution of the model the contents of the
result file will be replaced. To append the new output to the existing file contents use:

fopen("result.dat", F_OUTPUT+F_APPEND)

We may now also wish to format the output more nicely, for instance:

forall(s in SHARES)
writeln(strfmt(s,-12), ": \t", strfmt(getsol(frac(s))*100,5,2), "%")

The function strfmt indicates the minimum space reserved for printing a string or a number. A
negative value for its second argument means left-justified printing. The optional third argument
denotes the number of digits after the decimal point. With this formated way of printing the
result file has the following contents:

Total return: 14.0667
treasury : 30.00%
hardware : 0.00%
theater : 20.00%
telecom : 0.00%
brewery : 6.67%
highways : 30.00%
cars : 0.00%
bank : 0.00%
software : 13.33%
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electronics : 0.00%

4.3 Parameters

It is commonly considered a good modeling style to hard-code as little information as possible
directly in a model. Instead, parameters and data should be specified and read from external
sources during the execution of a model to make it more versatile and easily re-usable. With
Mosel it is therefore possible to define, for example, file names and numerical constants in the
form of parameters the values of which may be modified at an execution without changing the
model itself.

In our example, we may define the input and output file as parameters and also the constant
terms (‘right hand side’ values) of the constraints and bounds. These parameter definitions must
be added to the beginning of the model file, immediately after the uses statement:

parameters
DATAFILE= "folio.dat" ! File with problem data
OUTFILE= "result.dat" ! Output file
MAXRISK = 1/3 ! Max. investment into high-risk values
MAXVAL = 0.3 ! Max. investment per share
MINAM = 0.5 ! Min. investment into N.-American values
end-parameters

and in the rest of the model the actual file names and data values are replaced by the parameters.

To modify the settings of these parameters when executing a model with IVE, select Build�

Options or alternatively, click on the run button: . In the dialog box that opens, check the field
Use model parameters and enter the new values for the parameters in the next line. For instance
to change the name of the result file and modify the values of MAXRISK and MAXVAL:

Figure 4.1: Changing model parameter settings

Notice that parameters really become important when the model is not just run in the
development environment IVE but rather used for testing and experimentation (batch mode,
scripts using the command line interface) and for final deployment (see Chapter 8). For example,
we may wish to write a batch file that runs our model foliodata.mos repeatedly with different
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parameter settings, and writes out the results each time to a different file. To do so, we simply
need to add the following lines to a batch file (we then use the standalone version of Mosel to
execute the model, which is invoked with the command mosel):

mosel exec foliodata MAXRISK=0.1 OUTFILE=’result1.dat’
mosel exec foliodata MAXRISK=0.2 OUTFILE=’result2.dat’
mosel exec foliodata MAXRISK=0.3 OUTFILE=’result3.dat’
mosel exec foliodata MAXRISK=0.4 OUTFILE=’result4.dat’

Another advantage of the use of parameters is that if models are distributed as BIM files
(portable, compiled BInary Model files), then they remain parameterizable, without having to
disclose the model itself and hence protecting your intellectual property.

4.4 Complete example

The complete model file foliodata.mos with all the features discussed in this chapter looks as
follows:

model "Portfolio optimization with LP"
uses "mmxprs" ! Use Xpress-Optimizer

parameters
DATAFILE= "folio.dat" ! File with problem data
OUTFILE= "result.dat" ! Output file
MAXRISK = 1/3 ! Max. investment into high-risk values
MAXVAL = 0.3 ! Max. investment per share
MINAM = 0.5 ! Min. investment into N.-American values
end-parameters

declarations
SHARES: set of string ! Set of shares
RISK: set of string ! Set of high-risk values among shares
NA: set of string ! Set of shares issued in N.-America
RET: array(SHARES) of real ! Estimated return in investment
end-declarations

initializations from DATAFILE
RISK RET NA
end-initializations

declarations
frac: array(SHARES) of mpvar ! Fraction of capital used per share
end-declarations

! Objective: total return
Return:= sum(s in SHARES) RET(s)*frac(s)

! Limit the percentage of high-risk values
sum(s in RISK) frac(s) <= MAXRISK

! Minimum amount of North-American values
sum(s in NA) frac(s) >= MINAM

! Spend all the capital
sum(s in SHARES) frac(s) = 1

! Upper bounds on the investment per share
forall(s in SHARES) frac(s) <= MAXVAL

! Solve the problem
maximize(Return)

! Solution printing to a file
fopen(OUTFILE, F_OUTPUT)
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writeln("Total return: ", getobjval)
forall(s in SHARES)
writeln(strfmt(s,-12), ": \t", strfmt(getsol(frac(s))*100,2,3), "%")
fclose(F_OUTPUT)

end-model
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CHAPTER 5

Drawing user graphs

In this chapter we show how to draw a user-defined graph with IVE. The graph we wish to display
is generated as a result of repeated executions of a model with different parameter settings. So
we shall first see an example of writing a simple algorithm in the Mosel language involving

� re-definition of constraints,

� repeated re-optimization,

� saving solution information,

� definition of a user graph: drawing points, lines, and labels, and

� simple programming tasks (loops and selections).

5.1 Extended problem description

In addition to the data considered so far (see table in Chapter 2), the investor now also has at
hand the estimations of the deviations from the expected return per share (Table 5.1). With this
additional information, he decides to run the LP model with different limits on the portion of
high-risk shares and to represent the results as a graph, plotting the resulting total return against
the deviation as a measure of risk.

Table 5.1: Estimated deviations

Number Description Deviation

1 treasury 0.1

2 hardware 19

3 theater 28

4 telecom 22

5 brewery 4

6 highways 3.5

7 cars 5

8 bank 0.5

9 software 25

10 electronics 16

5.2 Looping over optimization

We are going to modify the model foliodata.mos from the previous chapter in such a way that
the problem is re-optimized repeatedly with different limits on the percentage of high-risk values.
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In detail, the model will be transformed to implement the following algorithm:

1. Definition of the part of the model that remains unchanged by the parameter changes.

2. For every parameter value:

� Re-define the constraint limiting the percentage of high-risk values.
� Solve the resulting problem.
� If the problem is feasible: store the solution values.

3. Draw the result graph.

To store the solution value and the total estimated deviation of the result after each optimization
run, we declare the following two arrays:

declarations
SOLRET: array(range) of real ! Solution values (total return)
SOLDEV: array(range) of real ! Solution values (average deviation)
end-declarations

The following code fragment introduces a loop around the definition of the constraint limiting
the portion of high-risk shares and the solution procedure. To be able to override its previous
definition at every iteration, we now give this constraint a name, Risk. If the constraint did not
have a name, then each time the loop was executed, a new constraint would be added, and the
existing constraint would not be replaced.

ct:=0
forall(r in 0..20) do
! Limit the percentage of high-risk values
Risk:= sum(s in RISK) frac(s) <= r/20

maximize(Return) ! Solve the problem
if (getprobstat = XPRS_OPT) then ! Save the optimal solution value
ct+=1
SOLRET(ct):= getobjval
SOLDEV(ct):= getsol(sum(s in SHARES) DEV(s)*frac(s))
else
writeln("No solution for high-risk values <= ", 100*r/20, "%")
end-if

end-do

Above we have used the second form of the forall loop, namely forall/do. This form must be used
when several statements are included in the loop. The loop is terminated by end-do.

Another new feature in this code extract is the if/then/else/end-if statement. We only want to
save the values for a problem instance if the optimal solution has been found—the solution
status is obtained with function getprobstat and tested whether it is ‘solved to optimality’,
represented by the constant XPRS_OPT.

The selection statement has two other forms, if/then/end-if and if/then/elif/then/else/end-if where
elif/then may be repeated several times.

For further examples and a complete description of all loops and selection statements available in
Mosel the reader is refered to the ‘Mosel User Guide’.

5.3 Drawing a user graph

We now have gathered all the data required to draw the graph. Graphing functions are provided
by the module mmive (documented in the ‘Mosel Language Reference Manual’), so it needs to be
loaded at the beginning of the model by adding the following line:
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uses "mmive"

Then the following lines draw the graph:

declarations
plot1: integer
end-declarations

plot1 := IVEaddplot("Solution values", IVE_BLACK)
forall(r in 1..ct) IVEdrawpoint(plot1, SOLRET(r), SOLDEV(r));
forall(r in 2..ct)
IVEdrawline(plot1, SOLRET(r-1), SOLDEV(r-1), SOLRET(r), SOLDEV(r))

The user graph will be displayed in the right window of the IVE workspace. Select the tab User
graph to move it to the foreground. With the above we obtain the following output (due to the
interplay of the various constraints the resulting graph is not a straight line as one might have
expected at first thought):

Figure 5.1: Plot of the result graph

In addition to this graph, we may also display labeled points representing the input data (‘plot2’
for low risk shares and ‘plot3’ for high risk shares):

declarations
plot2, plot3: integer
end-declarations

plot2 := IVEaddplot("Low risk", IVE_YELLOW)
forall (s in SHARES - RISK) do
IVEdrawpoint(plot2, RET(s), DEV(s))
IVEdrawlabel(plot2, RET(s)+3.4, 1.3*(DEV(s)-1), s)
end-do

plot3 := IVEaddplot("High risk", IVE_RED)
forall (s in RISK) do
IVEdrawpoint(plot3, RET(s), DEV(s))
IVEdrawlabel(plot3, RET(s)-2.5, DEV(s)-2, s)
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end-do

Notice the set notation: SHARES - RISK means ‘all elements of SHARES that are not contained
in RISK’.

The complete output now is:

Figure 5.2: Plot of result graph and data

5.4 Complete example

The complete model file foliograph.mos with all the features discussed in this chapter looks as
follows. Notice that the two modules mmxprs and mmive may be loaded with a single uses
statement. The deviation data may either be added to the original data file or, as shown here,
read from a second file.

model "Portfolio optimization with LP"
uses "mmxprs", "mmive" ! Use Xpress-Optimizer with IVE graphing

parameters
DATAFILE= "folio.dat" ! File with problem data
DEVDATA= "foliodev.dat" ! File with deviation data
MAXVAL = 0.3 ! Max. investment per share
MINAM = 0.5 ! Min. investment into N.-American values
end-parameters

declarations
SHARES: set of string ! Set of shares
RISK: set of string ! Set of high-risk values among shares
NA: set of string ! Set of shares issued in N.-America
RET: array(SHARES) of real ! Estimated return in investment
DEV: array(SHARES) of real ! Standard deviation
SOLRET: array(range) of real ! Solution values (total return)
SOLDEV: array(range) of real ! Solution values (average deviation)
end-declarations
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initializations from DATAFILE
RISK RET NA
end-initializations

initializations from DEVDATA
DEV
end-initializations

declarations
frac: array(SHARES) of mpvar ! Fraction of capital used per share
Return, Risk: linctr ! Constraint declaration (optional)
end-declarations

! Objective: total return
Return:= sum(s in SHARES) RET(s)*frac(s)

! Minimum amount of North-American values
sum(s in NA) frac(s) >= MINAM

! Spend all the capital
sum(s in SHARES) frac(s) = 1

! Upper bounds on the investment per share
forall(s in SHARES) frac(s) <= MAXVAL

! Solve the problem for different limits on high-risk shares
ct:=0
forall(r in 0..20) do
! Limit the percentage of high-risk values
Risk:= sum(s in RISK) frac(s) <= r/20

maximize(Return) ! Solve the problem

if (getprobstat = XPRS_OPT) then ! Save the optimal solution value
ct+=1
SOLRET(ct):= getobjval
SOLDEV(ct):= getsol(sum(s in SHARES) DEV(s)*frac(s))
else
writeln("No solution for high-risk values <= ", 100*r/20, "%")
end-if

end-do

! Drawing a graph to represent results (‘plot1’) and data (‘plot2’ & ‘plot3’)
declarations
plot1, plot2, plot3: integer
end-declarations

plot1 := IVEaddplot("Solution values", IVE_BLACK)
plot2 := IVEaddplot("Low risk", IVE_YELLOW)
plot3 := IVEaddplot("High risk", IVE_RED)

forall(r in 1..ct) IVEdrawpoint(plot1, SOLRET(r), SOLDEV(r));

forall(r in 2..ct)
IVEdrawline(plot1, SOLRET(r-1), SOLDEV(r-1), SOLRET(r), SOLDEV(r))

forall (s in SHARES-RISK) do
IVEdrawpoint(plot2, RET(s), DEV(s))
IVEdrawlabel(plot2, RET(s)+3.4, 1.3*(DEV(s)-1), s)
end-do

forall (s in RISK) do
IVEdrawpoint(plot3, RET(s), DEV(s))
IVEdrawlabel(plot3, RET(s)-2.5, DEV(s)-2, s)
end-do

end-model
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The problem is not feasible for small limit values on the constraint Risk. Besides the graphs we
therefore obtain the following text output:

No solution for high-risk values <= 0%
No solution for high-risk values <= 5%
No solution for high-risk values <= 10%
No solution for high-risk values <= 15%
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CHAPTER 6

Mixed Integer Programming

This chapter extends the model developed in Chapter 3 to a Mixed Integer Programming (MIP)
problem. It describes how to

� define different types of discrete variables,

� understand and exploit the MIP optimization displays in IVE.

Chapter 11 shows how to formulate and solve the same example with BCL and in Chapter 16 the
problem is input and solved directly with Xpress-Optimizer.

6.1 Extended problem description

The investor is unwilling to have small share holdings. He looks at the following two possibilities
to formulate this constraint:

1. Limiting the number of different shares taken into the portfolio.

2. If a share is bought, at least a certain minimum amount MINVAL = 10% of the budget is
spent on the share.

We are going to deal with these two constraints in two separate models.

6.2 MIP model 1: limiting the number of different shares

To be able to count the number of different values we are investing in, we introduce a second set
of variables buys in the LP model developed in Chapter 2. These variables are indicator variables
or binary variables. A variable buys takes the value 1 if the share s is taken into the portfolio and
0 otherwise.

We introduce the following constraint to limit the total number of assets to a maximum of
MAXNUM. It expresses the constraint that at most MAXNUM of the variables buys may take the
value 1 at the same time. ∑

s∈SHARES

buys ≤MAXNUM

We now still need to link the new binary variables buys with the variables fracs, the quantity of
every share selected into the portfolio. The relation that we wish to express is ‘if a share is
selected into the portfolio, then it is counted in the total number of values’ or ‘if fracs >0 then
buys = 1’. The following inequality formulates this implication:

∀s ∈ SHARES : fracs ≤ buys
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If, for some s, fracs is non-zero, then buys must be greater than 0 and hence 1. Conversely, if buys

is at 0, then fracs is also 0, meaning that no fraction of share s is taken into the portfolio. Notice
that these constraints do not prevent the possibility that buys is at 1 and fracs at 0. However, this
does not matter in our case, since any solution in which this is the case is also valid with both
variables, buys and fracs, at 0.

6.2.1 Implementation with Mosel

We extend the LP model developed in Chapter 3 (using the initialization of data from file
introduced in Chapter 4) with the new variables and constraints. The fact that the new variables
are binary variables (i.e. they only take the values 0 and 1) is expressed through the is_binary
constraint.

Another common type of discrete variable is an integer variable, that is, a variable that can only
take on integer values between given lower and upper bounds. This variable type is defined in
Mosel with an is_integer constraint. In the following section (MIP model 2) we shall see yet
another example of discrete variables, namely semi-continuous variables.

model "Portfolio optimization with MIP"
uses "mmxprs" ! Use Xpress-Optimizer

parameters
MAXRISK = 1/3 ! Max. investment into high-risk values
MAXVAL = 0.3 ! Max. investment per share
MINAM = 0.5 ! Min. investment into N.-American values
MAXNUM = 4 ! Max. number of different assets
end-parameters

declarations
SHARES: set of string ! Set of shares
RISK: set of string ! Set of high-risk values among shares
NA: set of string ! Set of shares issued in N.-America
RET: array(SHARES) of real ! Estimated return in investment
end-declarations

initializations from "folio.dat"
RISK RET NA
end-initializations

declarations
frac: array(SHARES) of mpvar ! Fraction of capital used per share
buy: array(SHARES) of mpvar ! 1 if asset is in portfolio, 0 otherwise
end-declarations

! Objective: total return
Return:= sum(s in SHARES) RET(s)*frac(s)

! Limit the percentage of high-risk values
sum(s in RISK) frac(s) <= MAXRISK

! Minimum amount of North-American values
sum(s in NA) frac(s) >= MINAM

! Spend all the capital
sum(s in SHARES) frac(s) = 1

! Upper bounds on the investment per share
forall(s in SHARES) frac(s) <= MAXVAL

! Limit the total number of assets
sum(s in SHARES) buy(s) <= MAXNUM

forall(s in SHARES) do
buy(s) is_binary ! Turn variables into binaries
frac(s) <= buy(s) ! Linking the variables
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end-do

! Solve the problem
maximize(Return)

! Solution printing
writeln("Total return: ", getobjval)
forall(s in SHARES)
writeln(s, ": ", getsol(frac(s))*100, "% (", getsol(buy(s)), ")")

end-model

In the model foliomip1.mos above we have used the second form of the forall loop, namely
forall/do, that needs to be used if the loop encompasses several statements. Equivalently we
could have written

forall(s in SHARES) buy(s) is_binary
forall(s in SHARES) frac(s) <= buy(s)

6.2.2 Analyzing the solution

If we pause the execution (using Build� Options or the button , then under Pause check to
view matrix) to visualize the matrix we now get the following display:

Figure 6.1: Matrix of the MIP problem

There are now more rows (constraints) and columns (variables) than in the LP matrix of the
previous chapters. Notice that the constraints fracs ≤ buys have been transformed to
fracs − buys ≤ 0 since in the matrix all decision variables are on the left hand side of the operator
sign (Mosel also stores constraints in this normalized form).

As the result of our model execution (select tab Output/input of the solution information
window) we obtain the following output:

Total return: 13.1
treasury: 20% (1)
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hardware: 0% (0)
theater: 30% (1)
telecom: 0% (0)
brewery: 20% (1)
highways: 30% (1)
cars: 0% (0)
bank: 0% (0)
software: 0% (0)
electronics: 0% (0)

The maximum return is now lower than in the original LP problem due to the additional
constraint. As required, only four different shares are selected to form the portfolio.

Let us now have a look at the detailed solution information (tab Stats):

Figure 6.2: Detailed MIP solution information

An additional column, Global search, containing the MIP-specific information, now appears in the
center of the display. As we have seen, it is relatively easy to turn an LP model into a MIP model
by adding an integrality condition on some (or all) variables. However, the same does not hold
for the solution algorithms: MIP problems are solved by repeatedly solving LP problems. Initially,
the problem is solved without any integrality constraints (the LP relaxation). Then, one at a time,
a discrete variable is chosen that does not satisfy the integrality condition in the current solution
and new upper or lower bounds are added for this variable to bring it to an integer value. If we
represent every LP solution as a node and connect these nodes by the bound changes or added
constraints, then we obtain a tree-like structure, the Branch-and-Bound tree.

In particular, the branching information tells us how many Branch-and-Bound nodes have been
needed to solve the problem: here it is just one, the enumeration did not even start. By default,
Xpress-Optimizer enables certain MIP pre-treatment algorithms (see the ‘Optimizer Reference
Manual’ for further detail on algorithmic settings), among others the automated generation of
cuts—i.e., additional constraints that cut off parts of the LP solution space, but no solution of the
MIP. This problem is of very small size and becomes so easy through the pre-treatment that it is
solved immediately.

Add the line
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setparam("XPRS_CUTSTRATEGY",0)
setparam("XPRS_HEURSTRATEGY",0)
setparam("XPRS_PRESOLVE",0)

to your model before the call to maximize and re-execute it. You have now switched off the MIP
pre-treatment routines for automated cut generation and MIP heuristics, and also the presolve
mechanism (a treatment to the matrix that tries to reduce its size and improve its numerical
properties).

It now takes several nodes to solve the problem:

Figure 6.3: Detailed MIP solution information (after disabling cuts)

and we may display the Branch-and-Bound tree by selecting the tab BB tree (see Figure 6.4).
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Figure 6.4: Branch-and-Bound tree

Different color codes are used to represent the tree nodes. Most importantly, the nodes where
integer solutions have been found are displayed as large green squares. Small red dots identify
infeasible LP relaxations. By moving the cursor over the tree nodes, additional information is
displayed, including the node number and the branching variable choice.

It is possible to pause the Branch-and-Bound algorithm to study in detail the construction of the

search tree. Select Build� Options or alternatively, click on the run options button: . In the
dialog window that gets displayed, under Pause check at every global search log entry and
confirm with Apply. When we now execute the model, it will pause after each node letting you
follow the construction of the search tree (to continue executing the model, click on the pause

button: ; to interrupt the execution use the stop button: ).

6.3 MIP model 2: imposing a minimum investment in each share

To formulate the second MIP model, we start again with the LP model from Chapters 2 and 3. The
new constraint we wish to formulate is ‘if a share is bought, at least a certain minimum amount
MINVAL = 10% of the budget is spent on the share.’ Instead of simply constraining every variable
fracs to take a value between 0 and MAXVAL, it now must either lie in the interval between
MINVAL and MAXVAL or take the value 0. This type of variable is known as semi-continuous
variable. In the new model, we replace the bounds on the variables fracs by the following
constraint:

∀s ∈ SHARES : fracs = 0 or MINVAL ≤ fracs ≤MAXVAL

6.3.1 Implementation with Mosel

The following model foliomip2.mos implements the MIP model 2, again starting with the LP
model from Chapter 3 augmented by the data initialization from file explained in Chapter 4. The
semi-continuous variables are defined with the is_semcont constraint.

A similar type is available for integer variables that take either the value 0 or an integer value
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between a given limit and their upper bound (so-called semi-continuous integers): is_semint. A
third composite type is a partial integer which takes integer values from its lower bound to a
given limit value and is continuous beyond this value (marked by is_partint).

model "Portfolio optimization with MIP"
uses "mmxprs" ! Use Xpress-Optimizer

parameters
MAXRISK = 1/3 ! Max. investment into high-risk values
MINAM = 0.5 ! Min. investment into N.-American values
MAXVAL = 0.3 ! Max. investment per share
MINVAL = 0.1 ! Min. investment per share
end-parameters

declarations
SHARES: set of string ! Set of shares
RISK: set of string ! Set of high-risk values among shares
NA: set of string ! Set of shares issued in N.-America
RET: array(SHARES) of real ! Estimated return in investment
end-declarations

initializations from "folio.dat"
RISK RET NA
end-initializations

declarations
frac: array(SHARES) of mpvar ! Fraction of capital used per share
end-declarations

! Objective: total return
Return:= sum(s in SHARES) RET(s)*frac(s)

! Limit the percentage of high-risk values
sum(s in RISK) frac(s) <= MAXRISK

! Minimum amount of North-American values
sum(s in NA) frac(s) >= MINAM

! Spend all the capital
sum(s in SHARES) frac(s) = 1

! Upper and lower bounds on the investment per share
forall(s in SHARES) do
frac(s) <= MAXVAL
frac(s) is_semcont MINVAL
end-do

! Solve the problem
maximize(Return)

! Solution printing
writeln("Total return: ", getobjval)
forall(s in SHARES) writeln(s, ": ", getsol(frac(s))*100, "%")

end-model

When executing this model (select tab Output/input of the solution information window) we
obtain the following output:

Total return: 14.0333
treasury: 30%
hardware: 0%
theater: 20%
telecom: 0%
brewery: 10%
highways: 26.6667%
cars: 0%
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bank: 0%
software: 13.3333%
electronics: 0%

Now five securities are chosen for the portfolio, each forming at least 10% and at most 30% of
the total investment. Due to the additional constraint, the optimal MIP solution value is again
lower than the initial LP solution value.
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CHAPTER 7

Quadratic Programming

In this chapter we turn the LP problem from Chapter 3 into a Quadratic Programming (QP)
problem, and the first MIP model from Chapter 6 into a Mixed Integer Quadratic Programming
(MIQP) problem. The chapter shows how to

� define quadratic objective functions,

� incrementally define and solve problems,

� understand and exploit the MIP optimization displays in IVE.

Chapter 12 shows how to formulate and solve the same examples with BCL and in Chapter 17 the
QP problem is input and solved directly with Xpress-Optimizer.

7.1 Problem description

The investor may also look at his portfolio selection problem from a different angle: instead of
maximizing the estimated return and limiting the portion of high-risk investments he now wishes
to minimize the risk whilst obtaining a certain target yield. He adopts the Markowitz idea of
getting estimates of the variance/covariance matrix of estimated returns on the securities. (For
example, hardware and software company worths tend to move together, but are oppositely
correlated with the success of theatrical production, as people go to the theater more when they
have become bored with playing with their new computers and computer games.) The return on
theatrical productions are highly variable, whereas the treasury bill yield is certain. The estimated
returns and the variance/covariance matrix are given in the following table:

Table 7.1: Variance/covariance matrix

treasury hardw. theater telecom brewery highways cars bank softw. electr.

treasury 0.1 0 0 0 0 0 0 0 0 0

hardware 0 19 -2 4 1 1 1 0.5 10 5

theater 0 -2 28 1 2 1 1 0 -2 -1

telecom 0 4 1 22 0 1 2 0 3 4

brewery 0 1 2 0 4 -1.5 -2 -1 1 1

highways 0 1 1 1 -1.5 3.5 2 0.5 1 1.5

cars 0 1 1 2 -2 2 5 0.5 1 2.5

bank 0 0.5 0 0 -1 0.5 0.5 1 0.5 0.5

software 0 10 -2 3 1 1 1 0.5 25 8

electronics 0 5 -1 4 1 1.5 2.5 0.5 8 16
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Question 1: Which investment strategy should the investor adopt to minimize the variance
subject to getting some specified minimum target yield?

Question 2: Which is the least variance investment strategy if the investor wants to choose at
most four different securities (again subject to getting some specified minimum target yield)?

The first question leads us to a Quadratic Programming problem, that is, a Mathematical
Programming problem with a quadratic objective function and linear constraints. The second
question necessitates the introduction of discrete variables to count the number of securities, and
so we obtain a Mixed Integer Quadratic Programming problem. The two cases will be discussed
separately in the following two sections.

7.2 QP

To adapt the model developed in Chapter 2 to the new way of looking at the problem, we need
to make the following changes:

� New objective function: mean variance instead of total return.

� The risk-related constraint disappears.

� Addition of a new constraint: target yield.

The new objective function is the mean variance of the portfolio, namely:∑
s,t∈SHARES

VARst · fracs · fract

where VARst is the variance/covariance matrix of all shares. This is a quadratic objective function
(an objective function becomes quadratic either when a variable is squared, e.g., frac2

1, or when
two variables are multiplied together, e.g., frac1 · frac2).

The target yield constraint can be written as follows:∑
s∈SHARES

RETs · fracs ≥ TARGET

The limit on the North-American shares as well as the requirement to spend all the money, and
the upper bounds on the fraction invested into every share are retained. We therefore obtain the
following complete mathematical model formulation:

minimize
∑

s,t∈SHARES

VARst · fracs · fract∑
s∈NA

fracs ≥MINAM∑
s∈SHARES

fracs = 1

∑
s∈SHARES

RETs · fracs ≥ TARGET

∀s ∈ SHARES : 0 ≤ fracs ≤MAXVAL

7.2.1 Implementation with Mosel

In addition to the Xpress-Optimizer module mmxprs we now also need to load the QP module
mmquad that adds to the Mosel language the facilities required for the definition of quadratic
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expressions (mmquad is documented in the ‘Mosel Language Reference Manual’). We can then
use the optimization function maximize (or alternatively minimize) for quadratic objective
functions to start the solution process.

This model uses a different data file (folioqp.dat) than the previous models:

! trs haw thr tel brw hgw car bnk sof elc
RET: [ (1) 5 17 26 12 8 9 7 6 31 21]

VAR: [ (1 1) 0.1 0 0 0 0 0 0 0 0 0 ! treasury
(2 1) 0 19 -2 4 1 1 1 0.5 10 5 ! hardware
(3 1) 0 -2 28 1 2 1 1 0 -2 -1 ! theater
(4 1) 0 4 1 22 0 1 2 0 3 4 ! telecom
(5 1) 0 1 2 0 4 -1.5 -2 -1 1 1 ! brewery
(6 1) 0 1 1 1 -1.5 3.5 2 0.5 1 1.5 ! highways
(7 1) 0 1 1 2 -2 2 5 0.5 1 2.5 ! cars
(8 1) 0 0.5 0 0 -1 0.5 0.5 1 0.5 0.5 ! bank
(9 1) 0 10 -2 3 1 1 1 0.5 25 8 ! software
(10 1) 0 5 -1 4 1 1.5 2.5 0.5 8 16 ! electronics
]

RISK: [2 3 4 9 10]
NA: [1 2 3 4]

Note that we have chosen to use numerical instead of string indices. Since the set SHARES is
defined in the model, we do not have to list the index-tuple for every data entry in the
file—those tuples given are for clarity’s sake only.

model "Portfolio optimization with QP/MIQP"
uses "mmxprs", "mmquad" ! Use Xpress-Optimizer with QP solver

parameters
MAXVAL = 0.3 ! Max. investment per share
MINAM = 0.5 ! Min. investment into N.-American values
MAXNUM = 4 ! Max. number of different assets
TARGET = 9.0 ! Minimum target yield
end-parameters

declarations
SHARES = 1..10 ! Set of shares
RISK: set of integer ! Set of high-risk values among shares
NA: set of integer ! Set of shares issued in N.-America
RET: array(SHARES) of real ! Estimated return in investment
VAR: array(SHARES,SHARES) of real ! Variance/covariance matrix of

! estimated returns
end-declarations

initializations from "folioqp.dat"
RISK RET NA VAR
end-initializations

declarations
frac: array(SHARES) of mpvar ! Fraction of capital used per share
end-declarations

! Objective: mean variance
Variance:= sum(s,t in SHARES) VAR(s,t)*frac(s)*frac(t)

! Minimum amount of North-American values
sum(s in NA) frac(s) >= MINAM

! Spend all the capital
sum(s in SHARES) frac(s) = 1

! Target yield
sum(s in SHARES) RET(s)*frac(s) >= TARGET
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! Upper bounds on the investment per share
forall(s in SHARES) frac(s) <= MAXVAL

! Solve the problem
minimize(Variance)

! Solution printing
writeln("With a target of ", TARGET, " minimum variance is ", getobjval)
forall(s in SHARES) writeln(s, ": ", getsol(frac(s))*100, "%")

end-model

This model (file folioqp.mos) produces the following solution output (tab Output/input of the
solution information window):

With a target of 9 minimum variance is 0.557393
1: 30%
2: 7.15391%
3: 7.38246%
4: 5.46363%
5: 12.6554%
6: 5.91228%
7: 0.332458%
8: 30%
9: 1.09983%
10: 0%

Similarly to the algorithm shown in Chapter 5, we may re-solve this problem with different values
of TARGET and plot the results in a target return/standard deviation graph, know as the ‘efficient
frontier’ (model file folioqpgraph.mos):

Figure 7.1: Graph of the efficient frontier
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7.3 MIQP

We now wish to express the fact that at most a given number MAXNUM of different assets may
be selected into the portfolio, subject to all other constraints of the previous QP model. In
Chapter 6 we have already seen how this can be done, namely by introducing an additional set of
binary decision variables buys that are linked logically to the continuous variables:

∀s ∈ SHARES : fracs ≤ buys

Through this relation, a variable buys will be at 1 if a fraction fracs greater than 0 is selected into
the portfolio. If, however, buys equals 0, then fracs must also be 0.

To limit the number of different shares in the portfolio, we then define the following constraint:∑
s∈SHARES

buys ≤MAXNUM

7.3.1 Implementation with Mosel

We may modify the previous QP model or simply add the following lines to the end of the QP
model in the previous section: the problem is then solved once as a QP and once as a MIQP in a
single model run.

declarations
buy: array(SHARES) of mpvar ! 1 if asset is in portfolio, 0 otherwise
end-declarations

! Limit the total number of assets
sum(s in SHARES) buy(s) <= MAXNUM

forall(s in SHARES) do
buy(s) is_binary
frac(s) <= buy(s)
end-do

! Solve the problem
minimize(Variance)

writeln("With a target of ", TARGET," and at most ", MAXNUM,
" assets, minimum variance is ", getobjval)

forall(s in SHARES) writeln(s, ": ", getsol(frac(s))*100, "%")

When executing the MIQP model, we obtain the following solution output:

With a target of 9 and at most 4 assets,
minimum variance is 1.24876
1: 30%
2: 20%
3: 0%
4: 0%
5: 23.8095%
6: 26.1905%
7: 0%
8: 0%
9: 0%
10: 0%

With the additional constraint on the number of different assets the minimum variance is more
than twice as large as in the QP problem.
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7.3.2 Analyzing the solution

Let us have a look at some of the solution displays. If we select the Stats window, we see the
following information:

Figure 7.2: Detailed MIQP solution information

This is quite similar to the MIP statistics, perhaps with the exception of the LP solution algorithm:
the initial LP relaxation has been solved by the Newton-Barrier algorithm. Since the
Branch-and-Bound tree has more than one node, we may also look at the resulting search tree
(window BB tree):
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Figure 7.3: MIQP Branch-and-Bound search tree

During the search, two integer feasible solutions have been found (all marked with green
squares). The best one is highlighted with a square of slightly larger size. The window Objective
provides more detail on the two solutions that have been found (Figure 7.4).

Figure 7.4: MIQP solutions

The upper half of this window shows the gap between the MIP solution values and the value of
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the LP relaxation. The graph in the lower half represents the absolute values of the solutions
found and the curve of the best (lower) bound obtained from the LP relaxations of the remaining
open nodes. At the end, the curve reaches the value of the best solution. This means that
optimality of this solution has been proven (we may have chosen to stop the search, for example,
after a given number of nodes, in which case it may not be possible to prove optimality or even
to find the best solution).
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CHAPTER 8

Heuristics

In this chapter we show a simple binary variable fixing solution heuristic that involves

� structuring a Mosel model via the definition of subroutines, and

� a heuristic solution procedure interacting with Xpress-Optimizer through parameter
settings, saving and recovering bases, and modifications of variable bounds.

Chapter 13 shows how to implement the same heuristic with BCL.

8.1 Binary variable fixing heuristic

The heuristic we wish to implement should perform the following steps:

1. Solve the LP relaxation and save the basis of the optimal solution

2. Rounding heuristic: Fix all variables ‘buy’ to 0 if the corresponding fraction bought is close
to 0, and to 1 if it has a relatively large value.

3. Solve the resulting MIP problem.

4. If an integer feasible solution was found, save the value of the best solution.

5. Restore the original problem by resetting all variables to their original bounds, and load the
saved basis.

6. Solve the original MIP problem, using the heuristic solution as cutoff value.

Step 2: Since the fraction variables frac have an upper bound of 0.3, as a ‘relatively large value’ in
this case we may choose 0.2. In other applications, for binary variables a more suitable choice may
be 1− ε, where ε is a very small value such as 10−5.

Step 6: Setting a cutoff value means that we only search for solutions that are better than this
value. If the LP relaxation of a node is worse than this value it gets cut off, because this node and
its descendants can only lead to integer feasible solutions that are even worse than the LP
relaxation.

8.2 Implementation with Mosel

For the implementation (file folioheur.mos) of the variable fixing solution heuristic we work
with the MIP 1 model from Chapter 6. Through the definition of the heuristic in the form of a
subroutine (more precisely, a procedure) we only make minimal changes to the model itself: at
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the beginning we declare the procedure using the keyword forward, and before solving our
problem with the standard call to the maximization function we execute our own solution
heuristic. The solution printing also has been adapted.

model "Portfolio optimization solved heuristically"
uses "mmxprs" ! Use Xpress-Optimizer

parameters
MAXRISK = 1/3 ! Max. investment into high-risk values
MAXVAL = 0.3 ! Max. investment per share
MINAM = 0.5 ! Min. investment into N.-American values
MAXNUM = 4 ! Max. number of assets
end-parameters

forward procedure solve_heur ! Heuristic solution procedure

declarations
SHARES: set of string ! Set of shares
RISK: set of string ! Set of high-risk values among shares
NA: set of string ! Set of shares issued in N.-America
RET: array(SHARES) of real ! Estimated return in investment
end-declarations

initializations from "folio.dat"
RISK RET NA
end-initializations

declarations
frac: array(SHARES) of mpvar ! Fraction of capital used per share
buy: array(SHARES) of mpvar ! 1 if asset is in portfolio, 0 otherwise
end-declarations

! Objective: total return
Return:= sum(s in SHARES) RET(s)*frac(s)

! Limit the percentage of high-risk values
sum(s in RISK) frac(s) <= MAXRISK

! Minimum amount of North-American values
sum(s in NA) frac(s) >= MINAM

! Spend all the capital
sum(s in SHARES) frac(s) = 1

! Upper bounds on the investment per share
forall(s in SHARES) frac(s) <= MAXVAL

! Limit the total number of assets
sum(s in SHARES) buy(s) <= MAXNUM

forall(s in SHARES) do
buy(s) is_binary
frac(s) <= buy(s)
end-do

! Solve problem heuristically
solve_heur

! Solve the problem
maximize(Return)

! Solution printing
if getprobstat=XPRS_OPT then
writeln("Exact solution: Total return: ", getobjval)
forall(s in SHARES) writeln(s, ": ", getsol(frac(s))*100, "%")
else
writeln("Heuristic solution is optimal.")
end-if
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!-----------------------------------------------------------------

procedure solve_heur
declarations
TOL: real ! Solution feasibility tolerance
fsol: array(SHARES) of real ! Solution values for ‘frac’ variables
bas: basis ! LP basis
end-declarations

setparam("XPRS_VERBOSE",true) ! Enable message printing in mmxprs
setparam("XPRS_CUTSTRATEGY",0) ! Disable automatic cuts
setparam("XPRS_HEURSTRATEGY",0) ! Disable automatic MIP heuristics
setparam("XPRS_PRESOLVE",0) ! Switch off presolve
TOL:=getparam("XPRS_FEASTOL") ! Get feasibility tolerance
setparam("ZEROTOL",TOL) ! Set comparison tolerance

maximize(XPRS_LPSTOP,Return) ! Solve the LP problem
savebasis(bas) ! Save the current basis

! Fix all variables ‘buy’ for which ‘frac’ is at 0 or at a relatively
! large value
forall(s in SHARES) do
fsol(s):= getsol(frac(s)) ! Get the solution values of ‘frac’
if (fsol(s) = 0) then
setub(buy(s), 0)
elif (fsol(s) >= 0.2) then
setlb(buy(s), 1)
end-if
end-do

maximize(XPRS_CONT,Return) ! Solve the MIP problem
ifgsol:=false
if getprobstat=XPRS_OPT then ! If an integer feas. solution was found
ifgsol:=true
solval:=getobjval ! Get the value of the best solution
writeln("Heuristic solution: Total return: ", solval)
forall(s in SHARES) writeln(s, ": ", getsol(frac(s))*100, "%")
end-if

! Reset variables to their original bounds
forall(s in SHARES)
if ((fsol(s) = 0) or (fsol(s) >= 0.2)) then
setlb(buy(s), 0)
setub(buy(s), 1)
end-if

loadbasis(bas) ! Load the saved basis

if ifgsol then ! Set cutoff to the best known solution
setparam("XPRS_MIPABSCUTOFF", solval+TOL)
end-if
end-procedure

end-model

This model certainly requires some more detailed explanations.

8.2.1 Subroutines

A subroutine in Mosel has a similar structure as the model itself: a procedure starts with the
keyword procedure, followed by the name of the procedure, and terminates with
end-procedure. Similarly, a function starts with the keyword function, followed by its name,
and terminates with end-function. Both types of subroutines may take a list of arguments and
for functions in addition the return type must be indicated, for example:

function myfunc(myint: integer, myarray: array(range) of string): real
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for a function that returns a real and takes as input arguments an integer and an array of string.

As shown in our example, a subroutine may contain one (or several) declarations blocks. The
objects defined in a subroutine are only valid locally and are deleted at the end of the
subroutine.

Subroutine definitions may be overloaded, that is, a single subroutine may take different
combinations of arguments. It is possible to overload any subroutines defined by Mosel and its
modules, provided that the new definition differs from the existing one(s) in at least one
argument.

For more detail and further examples of subroutine definition see the ‘Mosel User Guide’.

8.2.2 Optimizer parameters and functions

Parameters: The solution heuristic starts with parameter settings for Xpress-Optimizer. Remember
that with IVE all parameters and other functionality provided by a module can be listed with the

module browser: select Modules� List available modules or alternatively, click on the button .
For a detailed explanation of all Optimizer parameters the reader is refered to the ‘Optimizer
Reference Manual’. All parameters are accessed through the Mosel subroutines setparam and
getparam. In the example, we first enable the output printing by the module mmxprs. As a
result, more information than what is printed by our model will be displayed in the Output/input
window. Output from the Optimizer is highlighted with colored bars (blue for the LP part,
orange for the MIP part):

Figure 8.1: Optimizer output display

Switching off the automated cut generation (parameter XPRS_CUTSTRATEGY) and the MIP
heuristics (parameter XPRS_HEURSTRATEGY) is optional,
whereas it is required in our case to disable the presolve mechanism (a treatment of the matrix
that tries to reduce its size and improve its numerical properties, set with parameter
XPRS_PRESOLVE), because we interact with the problem in the Optimizer in the course of its
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solution and this is only possible correctly if the matrix has not been modified by the Optimizer.

In addition to the parameter settings we also retrieve the feasibility tolerance used by
Xpress-Optimizer: the Optimizer works with tolerance values for integer feasibility and solution
feasibility that are typically of the order of 10−6 by default. When evaluating a solution, for
instance by performing comparisons, it is important to take into account these tolerances.

Optimization statement: We use a new version of the maximization procedure with an additional
argument, XPRS_LPSTOP, indicating that we only want to solve the top node LP relaxation (and
not yet the entire MIP problem). To continue with MIP solving from the point where we have
stopped the algorithm we use the argument XPRS_CONT. This is an example of an overloaded
subroutine definition.

Saving and loading bases: To speed up the solution process, we save (in memory) the current basis
of the Simplex algorithm after solving the initial LP relaxation, before making any changes to the
problem. This basis is loaded again at the end, once we have restored the original problem. The
MIP solution algorithm then does not have to re-solve the LP problem from scratch, it resumes
the state where it was ‘interrupted’ by our heuristic.

Bound changes: When a problem has already been loaded into the Optimizer (e.g. after
executing an optimization statement or following an explicit call to loadprob) bound changes
via setlb and setub are passed on directly to the Optimizer. Any other changes (addition or
deletion of constraints or variables) always lead to a complete reloading of the problem.

For more detail on the Optimizer functionality used in this example see the documentation of the
module mmxprs in the ‘Mosel Language Reference Manual’.

8.2.3 Comparison tolerance

After retrieving the feasibility tolerance of the Optimizer we set the comparison tolerance of
Mosel (ZEROTOL) to this value TOL. This means that the test fsol(s) = 0 evaluates to true if
fsol(s) lies between -TOL and TOL, and fsol(s) >= 0.2 is satisfied if the value of fsol(s) is
at least 0.2-TOL.

Comparisons in Mosel always use a tolerance, with a very small default value. By resetting this
parameter to the Optimizer feasibility tolerance Mosel evaluates solution values just like the
Optimizer.
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CHAPTER 9

Embedding a Mosel model
in an application

Mosel models frequently need to be embedded in applications so they can be deployed easily. In
this chapter we discuss

� how to generate a deployment template,

� the meaning and use of BIM files,

� the use of parameterized model and BIM files,

� how to export and import matrix files with Mosel and IVE, and

� how to create an Optimization Modeler application from a model file.

9.1 Generating a deployment template

Select Deploy� Deploy or click the deploy button . In the selection window that is opened
(Figure 9.1) under Run Mosel model from we choose the option Visual Basic. (For deployment
with C, Java, or any other supported language the procedure is similar.)

Figure 9.1: Choosing the deployment type
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Clicking on the Next button will open a new window with the resulting code (Figure 9.2).

Figure 9.2: Code preview

Use the Save as button to set the name (foliorun.bas) and location of the new file. You may
add this file as a module to a Visual Basic project, an MS Excel worksheet, etc. In a Visual Basic
project, you also need to include the module xprm.bas for the model to run.

Any C or Java programs created with the deployment wizard can be run on all systems for which
Mosel is available.

9.2 BIM files

The template we have just generated assumes that the Mosel model is distributed in the form of
a BIM file (BInary Model file). A BIM file is a compiled version of the .mos model file that is
portable across all platforms for which Mosel is available. It does not include any data read from
external files. These must still be provided in separate files, thus making it possible to run the
same BIM file with different data sets (see section Parameters below).

To generate a BIM file you may use Build� Compile or equivalently, click on the button . The
BIM file will then be created in the same directory as the Mosel file by appending the extension
.bim to the file name (instead of .mos). You may also again use the deployment wizard, this
time choosing one of the options With debug info or All names stripped under the heading Save
.BIM file. The first option is the IVE default, the second option is recommended for final
deployment, especially if you wish to protect your intellectual property in the model, since it
removes all names used in your model.

It is also possible to execute Mosel source files (.mos) directly from an application (see the
following section). In this case the BIM file does not need to be generated.
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9.3 Modifying the template

9.3.1 Executing Mosel models

Leaving out the error checking, the relevant lines of the generated code are the following:

Sub Main()
Dim result As Long
Dim model

’ Initialize Mosel
XPRMinit

’ Load compiled model
model = XPRMloadmod("foliodata.bim", "")

’ Run the model
XPRMrunmod model, result, ""

’ Unload the model
XPRMunloadmod (model)
End Sub

If we do not wish to create the BIM file separately, we may also compile, load, and run the Mosel
model foliodata.mos directly, for instance as shown in the following code fragment.

Sub Main()
Dim result As Long
Dim model

’ Initialize Mosel
XPRMinit

’ Execute = compile/load/run a model
XPRMexecmod "", "foliodata.mos", "", result, model

’ Unload the model
XPRMunloadmod (model)
End Sub

9.3.2 Parameters

In Chapter 4 we have shown how to modify parameter settings with IVE or when running the
Mosel standalone version (for instance in batch files or scripts). The model parameters may also
be reset when a Mosel model or BIM file is embedded in an application, making it possible to
solve many different problem instances without having to change the model source.

In this example (file folioparam.bas) we modify the name of the result file and the settings for
two numerical parameters of our model foliodata.mos. All other model parameters will take
the default values specified at their definition in the model.

Sub Main()
Dim result As Long
Dim model

’ Initialize Mosel
XPRMinit

’ Execute model with changed parameters
XPRMexecmod "", "foliodata.mos", "OUTFILE=result2.dat,MAXRISK=0.4,MAXVAL=0.25",
result, model
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Figure 9.3: Matrix export window

’ Unload the model
XPRMunloadmod(model)
End Sub

Similarly, to run the BIM file with changed parameter settings, we simply need to add the
parameters to the ‘run’ function call:

XPRMrunmod model, result, "OUTFILE=result2.dat,MAXRISK=0.4,MAXVAL=0.25"

9.3.3 Redirecting the VB output

Since Visual Basic does not provide any standard output channel, Mosel’s VB interface enables the
user to redirect all output produced by Mosel to files. To redirect all output of a model to the file
folioout.txt add the following function call before the execution of the Mosel model:

’ Redirect all output to the file "folioout.txt"
XPRMsetdefstream vbNull, XPRM_F_OUTPUT, "folioout.txt"

Since in our example foliodata.mos the output is already redirected to the file result.dat by
the model itself, it may be more important to be able to recover any possible error messages
produced by Mosel: in the line above, replace XPRM_F_OUTPUT by XPRM_F_ERROR to redirect the
error stream to a file.

9.4 Matrix files

9.4.1 Exporting matrices

If the optimization process with Xpress-Optimizer is started from within a Mosel program, or if
the solving procedure is part of the application into which a Mosel model has been embedded,
then the problem matrix is loaded in memory into the solver without writing it out to a file
(which would be expensive in terms of running time). However, in certain cases it may still be
required to be able to produce a matrix. With Xpress, the user has the choice between two matrix
formats: extended MPS and extended LP format, the latter being in general more easily
human-readable since constraints are printed in algebraic form.

With Mosel and IVE, there are several possibilities for generating a matrix:

1. Using the IVE menu:

After executing the model select Build� Export matrix file or click on the button . In the
resulting matrix export window choose the file name and type and select the objective
function (Figure 9.3).
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2. With a matrix generation statement in the model file:
to create an MPS matrix for our problem add the line

exportprob(EP_MPS, "folio", Return)

for an LP format matrix (which we intend to maximize at some point) add the line

exportprob(EP_MAX, "folio", Return)

immediately before or instead of the optimization statement.

3. From an application after having executed the model file: only possible with C programs

9.4.2 Importing matrices

Matrices may also be loaded and solved with IVE: Select Build� Optimize matrix file or click on

the button . The following window opens (Figure 9.4).

Figure 9.4: Matrix import window

When solving a matrix with IVE, some of the displays are disabled since a matrix does not contain
the full information of a Mosel model. However, the solution information in the right window
(execution log, problem statistics, etc.) remains accessible (Figure 9.5).
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Figure 9.5: Matrix optimization output

9.5 Deployment to Optimization Modeler

Optimization Modeler embeds Mosel models into a multi-user application for deploying
optimization models in a distributed client-server architecture. Through the Optimization
Modeler GUI, business users interact with Mosel models to evaluate different scenarios and model
configurations without directly accessing to the model itself.

The description in the following paragraphs assumes that we are working with the developer
version of an Optimization Modeler desktop installation.

9.5.1 Preparing the model file

For embedding a Mosel model into Optimization Modeler, we need to make a few edits to the
Mosel model in order to establish the connection between Mosel and Optimization Modeler.

Firstly, we need to load the package mminsight that provides the required additional
functionality. Since Optimization Modeler manages the data scenarios, we only need to read in
data from the original sources when loading the scenario (also referred to as baseline run) into
Optimization Modeler (triggered by the test of insight_use_original_data in the model
below). Scenario data will otherwise be input directly from Optimization Modeler at the insertion
point marked with insight_end_initializations. Furthermore, the solver call to start the
optimization is replaced by insight_minimize / insight_maximize. The resulting model file
folioinsight.mos (based on foliodata.mos) has the following contents.

model "Portfolio optimization with LP"
uses "mmxprs" ! Use Xpress-Optimizer
uses "mminsight" ! Use Optimization Modeler

parameters
DATAFILE= "folio.dat" ! File with problem data
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MAXRISK = 1/3 ! Max. investment into high-risk values
MAXVAL = 0.3 ! Max. investment per share
MINAM = 0.5 ! Min. investment into N.-American values
end-parameters

declarations
SHARES: set of string ! Set of shares
RISK: set of string ! Set of high-risk values among shares
NA: set of string ! Set of shares issued in N.-America
RET: array(SHARES) of real ! Estimated return in investment
end-declarations

if insight_use_original_data then ! Data for baseline
initializations from DATAFILE
RISK RET NA
end-initializations
end-if

declarations
frac: array(SHARES) of mpvar ! Fraction of capital used per share
Return, LimitRisk, LimitAM, TotalOne: linctr ! Constraints
end-declarations

! Input data injection point for all scenarios other than baseline
insight_end_initializations

! Objective: total return
Return:= sum(s in SHARES) RET(s)*frac(s)

! Limit the percentage of high-risk values
LimitRisk:= sum(s in RISK) frac(s) <= MAXRISK

! Minimum amount of North-American values
LimitAM:= sum(s in NA) frac(s) >= MINAM

! Spend all the capital
TotalOne:= sum(s in SHARES) frac(s) = 1

! Upper bounds on the investment per share
forall(s in SHARES) frac(s) <= MAXVAL

! Solve the problem through Optimization Modeler
insight_maximize(Return)

end-model

Note that we have removed all solution output from this model: we are going to use
Optimization Modeler for representing the results.

9.5.1.1 The project archive

Optimization Modeler expects models to be provided in compiled form, that is, as BIM files—see
Section 9.2 on how to generate BIM files from the model source. Since Optimization Modeler
executes Mosel models in a distributed architecture (so, possibly not on the same machine from
where the model file is input) we recommend to include any input data files used by the model in
the Optimization Modeler project archive. The project archive is a ZIP archive that contains the
BIM file and the optional subdirectories model_resources (data files), client_resources
(custom view definitions), and source (Mosel model source files). For our example, we create a
ZIP archive folioinsight.zip with the file folioinsight.bim and the data file folio.dat
in the subdirectory model_resources.
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9.5.2 Working with the Optimization Modeler GUI

The Optimization Modeler Analyst Client can be started from the Windows Start Menu or from
the command line. To start the client from the Windows Start menu select Start� FICO� Xpress
� Optimization Modeler Analyst Client. To start the client from the command line, open a
Command Prompt window and change directory to the bin subdirectory of the Xpress
installation. Then type: Optimization Modeler Analyst Client

Starting up the Optimization Modeler Analyst Client might take a little while, since the program
attempts to locate an Optimization Modeler server and if it cannot locate a server, it will start one
locally. Once the application is ready you will see the Optimization Modeler entry screen:

Figure 9.6: Optimization Modeler entry screen

At the top we see the Optimization Modeler menu and tool bar. The windows on the left are the
Repository pane and the Entities pane, at the bottom is located the Run pane. The grey area is
the place where the views of data or model information will be opened. If you have modified the
window layout while working with an application, you can always return to this original layout

by selecting the button .

9.5.2.1 Starting a new Optimization Modeler project

We now want to load the project archive folioinsight.zip that we have prepared:

1. Click into the Repository pane.

2. Select the menu File� New� New Project to open a file selection dialogue.

3. Choose the project archive folioinsight.zip and confirm with the Open button.
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4. One after the other, you will now see these two prompts where each time, you need to
select Yes.

The scenario loading performs a partial model execution (up to the marker
insight_end_initializations) to import the external data.

This scenario run executes the complete model with a copy of the data imported when
loading the scenario.

The Job Queue pane at the botton of the screen should now have changed to the following
display, indicating that the Mosel model has been executed and is ready for exploration by
Optimization Modeler:

Figure 9.7: Optimization Modeler job queue pane

9.5.2.2 Exploring the Optimization Modeler project

In the Repository pane, expand the entries (left mouse key) to obtain the following display:

Figure 9.8: Optimization Modeler repository pane

When selecting Scenario 1, the Entities pane will get populated with the following contents.
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Figure 9.9: Optimization Modeler entities pane

Notice that by default, Optimization Modeler classifies model objects of types string, integer
or real as input and objects of type mpvar or linctr as results.

Double clicking on input, model, or result entries in the Repository or Entities panes will open the
built-in default view (entity: table view) for that object type in the central View pane. Right click
on any node in the Repository or Entities panes to display a context menu (such as ’Delete’,
’Rename’, and a list of Open with XXX). To inspect the folioinsight model, we suggest to open
the following views from the entities pane using the context menu:

1. input parameters: Open with Table. These are the values of the run-time parameters used
by the scenario run (NB: the data file name setting is only relevant when reading external
data during the loading of the scenario).

2. results (scalars): Open with Table. This will display detailed solution information for the
constraints in our model since all of them are scalars.

3. results frac: Open with Table. This view shows the solution values for the decision variables
frac and in an additional column it displays the values of the array RET (Optimization
Modeler automatically adds all arrays from the scenario data that share the same index sets
as the selected entry).

4. results frac: Open with Chart. To configure the chart, select menu Chart� Settings... (or the

button from the toolbar) and in the drop down list under Chart type select "Pie", then
confirm with the "OK" button. (An alternative method for creating this chart is to select the
header frac in the view Table: frac and choose New Chart from the context menu.)

All these views are opened in the central view pane. To arrange the overlapping views in this
window, select the label tag of the view and while keeping the left mouse key pressed, drag it
towards the border of the area where the view should be positioned, e.g. select the view label
Chart: frac and drag it towards the right border of the Optimization Modeler screen until you see
appearing a grey border outline that indicates the desired new position of the view. The
resulting application screen might look as follows:
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Figure 9.10: Optimization Modeler application window for the ’folioinsight’ project

9.5.2.3 Editing model data

Once we have conveniently arranged all the views that we wish to observe, we are ready to start
making edits to input data displayed in any of the views on our screen. Optimization Modeler
implements a locking mechanism to prevent users from making inconsistent edits to their
application data. If the icon of the view that you wish to edit is overlaid with a yellow padlock,

e.g. , you need to click on the icon or select menu Edit� Edit to make this view editable.
This may prompt you whether you wish to save changes made to the project up to this point.

Editing a value: click on a cell in the table and make a selection from the drop-down list or enter
a value
Adding a new entry in array data: click on the blank row at the bottom of the table

For example, modify the value of ’MAXVAL’ in the view Table: parameters. Then select menu Run

(or the run button from the toolbar) and observe how the displayed results are changing.
Now add a new entry at the bottom of the table in the view Table: frac by entering its name
’newone’ in the column SHARES and the value 50 in the column RET (leaving empty the cell of
the result column frac). Rerun the model to see the new results.

Any changes to scenario data can be saved within Optimization Modeler with menu File� Save.
Modified configuration settings for charts can be saved as a named profile in the chart
configuration dialogue, they will then appear as a separate menu option for this chart.

9.5.2.4 Comparing data scenarios

Instead of editing and re-running a single scenario, it usually is more convenient to create several
distinct scenarios and use the built-in multi-scenario table and chart views to display and compare
input and results data from several scenarios.
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New scenarios are created either from the project: right click on the project name and choose
New Scenario, or from another scenario: right click on the scenario and choose Clone.

For example, let us create two new scenarios by cloning the original Scenario 1. In the first copy,
we change the parameter MAXVAL to 0.2, and in the second copy we set MAXVAL to 0.4. After
modifying the scenario data, we select Run for each of the scenarios.

In the Repository pane, select the project name folioinsight and select Open with Multi Scenario
Table from the context menu. This results in a table with the objective function values for each of
the scenarios. To add further columns to this comparison, right-click on any cell in a table view
and select the option Add to MS Table. We choose to add all solution values for decision variables
frac to this comparison, and also remove the objective function value by selecting Remove from

the context menu (right mouse key) on the column header. Now click on the chart icon to

generate the chart view, followed by to open the Chart Settings dialogue where we select the
Chart type Bar, enter a custom title (uncheck Use default title), and check the box Depth effect to
obtain the diagram displayed in the screenshot below.

We have also created a second multi scenario table that reports besides the objective function
value the setting of the parameter MAXVAL (in the corresponding cell of the ’parameters’ view,
select the context menu Add to MS Table), and a multi-scenario chart with the objective function
values (on the header ’Objective’ of the multi-sceanrio table select the context menu New Multi
Scenario Chart). At the bottom, we have opened a chart view of the ’frac’ array for individual
scenarios as described above in Section 9.5.2.2.

Figure 9.11: Multi-scenario comparison with Optimization Modeler
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II. Getting started with BCL



CHAPTER 10

Inputting and solving a
Linear Programming problem

In this chapter we take the example formulated in Chapter 2 and show how to implement the
model with BCL. With some extensions to the initial formulation we also introduce input and
output functionalities of BCL:

� writing an LP model with BCL,

� data input from file using index sets,

� output facilities of BCL,

� exporting a problem to a matrix file.

Chapter 3 shows how to formulate and solve the same example with Mosel and in Chapter 15 the
problem is input and solved directly with Xpress-Optimizer.

10.1 Implementation with BCL

All BCL examples in this book are written with C++. Due to the possibility of overloading
arithmetic operators in the C++ programming language, this interface provides the most
convenient way of stating models in a close to algebraic form. The same models can also be
implemented using the C, Java, or Visual Basic interfaces of BCL.

The following BCL program implements the LP example introduced in Chapter 2:

#include <iostream>
#include "xprb_cpp.h"

using namespace std;
using namespace ::dashoptimization;

#define NSHARES 10 // Number of shares
#define NRISK 5 // Number of high-risk shares
#define NNA 4 // Number of North-American shares

double RET[] = {5,17,26,12,8,9,7,6,31,21}; // Estimated return in investment
int RISK[] = {1,2,3,8,9}; // High-risk values among shares
int NA[] = {0,1,2,3}; // Shares issued in N.-America

int main(int argc, char **argv)
{
int s;
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XPRBprob p("FolioLP"); // Initialize a new problem in BCL
XPRBexpr Risk,Na,Return,Cap;
XPRBvar frac[NSHARES]; // Fraction of capital used per share

// Create the decision variables
for(s=0;s<NSHARES;s++) frac[s] = p.newVar("frac");

// Objective: total return
for(s=0;s<NSHARES;s++) Return += RET[s]*frac[s];
p.setObj(Return); // Set the objective function

// Limit the percentage of high-risk values
for(s=0;s<NRISK;s++) Risk += frac[RISK[s]];
p.newCtr("Risk", Risk <= 1.0/3);

// Minimum amount of North-American values
for(s=0;s<NNA;s++) Na += frac[NA[s]];
p.newCtr("NA", Na >= 0.5);

// Spend all the capital
for(s=0;s<NSHARES;s++) Cap += frac[s];
p.newCtr("Cap", Cap == 1);

// Upper bounds on the investment per share
for(s=0;s<NSHARES;s++) frac[s].setUB(0.3);

// Solve the problem
p.setSense(XPRB_MAXIM);
p.lpOptimize("");

// Solution printing
cout << "Total return: " << p.getObjVal() << endl;
for(s=0;s<NSHARES;s++)
cout << s << ": " << frac[s].getSol()*100 << "%" << endl;

return 0;
}

Let us now have a closer look at what we have just written.

10.1.1 Initialization

To use the BCL C++ interface you need to include the header file xprb_cpp.h. We also define the
namespace to which the BCL classes belong.

If the software has not been initialized previously, BCL is initialized automatically when the first
problem is created, that is by the line

XPRBprob p("FolioLP");

which creates a new problem with the name ‘FolioLP’.

10.1.2 General structure

The definition of the model itself starts with the creation of the decision variables (method
newVar), followed by the definition of the objective function and the constraints. In C++ (and
Java) constraints may be created starting with linear expressions as shown in the example.
Equivalently, they may be constructed termwise, for instance the constraint limiting the
percentage of high-risk shares:

XPRBctr CRisk;
CRisk = p.newCtr("Risk");
for(s=0;s<NRISK;s++) CRisk.addTerm(frac[RISK[s]], 1);
CRisk.setType(XPRB_L);
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CRisk.addTerm(1.0/3);

This second type of constraint definition is common to all BCL interfaces and is the only method
of defining constraints in C and VB where overloading is not available.

Notice that in the definition of equality constraints (here the constraint stating that we wish to
spend all the capital) we need to employ a double equality sign ==.

The method setUB is used to set the upper bounds on the decision variables frac. Alternatively
to this separate function call, we may also specify the bounds directly at the creation of the
variables, but in this case we need to provide the full information including the name, variable
type (XPRB_PL for continuous), lower and upper bound values:

for(s=0;s<NSHARES;s++) frac[s] = p.newVar("frac", XPRB_PL, 0, 0.3);

Giving string names to modeling objects (decision variables, constraints, etc.) as shown in our
example program is optional. If the user does not specify any name, BCL will generate a default
name. However, user-defined names may be helpful for debugging and for the interpretation of
output produced by the Optimizer.

10.1.3 Solving

Prior to launching the solver, the optimization direction is set to maximization with a call to
setSense. With the method lpOptimize we then call Xpress-Optimizer to maximize the
objective function (Return) set with the method setObj, subject to all constraints that have
been defined. The empty string argument of lpOptimize indicates that the default LP algorithm
is to be used. Other possible values are "p" for primal, "d" for dual Simplex, and "b" for
Newton-Barrier.

10.1.4 Output printing

The last few lines print out the value of the optimal solution and the solution values for all
variables.

10.2 Compilation and program execution

If you have followed the standard installation procedure of Xpress-Optimizer and BCL, you may
compile this file with the following command under Windows (note that it is important to use
the flag /MD):

cl /MD /I%XPRESSDIR%\include %XPRESSDIR%\lib\xprb.lib foliolp.cpp

For Linux or Solaris use

cc -D_REENTRANT -I${XPRESSDIR}/include -L${XPRESSDIR}/lib foliolp.C -o foliolp -lxprb

For other systems please refer to the example makefile provided with the corresponding
distribution.

Running the resulting program will generate the following output:

Reading Problem FolioLP
Problem Statistics

3 ( 0 spare) rows
10 ( 0 spare) structural columns
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19 ( 0 spare) non-zero elements
Global Statistics

0 entities 0 sets 0 set members
Maximizing LP FolioLP
Original problem has:

3 rows 10 cols 19 elements
Presolved problem has:

3 rows 10 cols 19 elements

Its Obj Value S Ninf Nneg Sum Inf Time
0 42.600000 D 2 0 .000000 0
5 14.066667 D 0 0 .000000 0

Uncrunching matrix
5 14.066667 D 0 0 .000000 0

Optimal solution found
Problem status: optimal
Total return: 14.0667
0: 30%
1: 0%
2: 20%
3: 0%
4: 6.66667%
5: 30%
6: 0%
7: 0%
8: 13.3333%
9: 0%

The upper half of this display is the log of Xpress-Optimizer: the size of the matrix, 3 rows (i.e.
constraints) and 10 columns (i.e. decision variables), and the log of the LP solution algorithm
(here: ‘D’ for dual Simplex). The lower half is the output produced by our program: the maximum
return of 14.0667 is obtained with a portfolio consisting of shares 1, 3, 5, 6, and 9. 30% of the
total amount are spent in shares 1 and 6 each, 20% in 3, 13.3333% in 9 and 6.6667% in 5. It is
easily verified that all constraints are indeed satisfied: we have 50% of North-American shares (1
and 3) and 33.33% of high-risk shares (3 and 9).

It is possible to modify the amount of output printing by BCL and Xpress-Optimizer by adding the
following line before the start of the optimization:

p.setMsgLevel(1);

This setting will disable all output (including warnings) from BCL and Xpress-Optimizer, with the
exception of error messages. The possible values for the printing level range from 0 to 4. In
Chapter 13 we show how to access the Optimizer control parameters directly which, for instance,
allows fine tuning the message display.

10.3 Data input from file

Instead of simply numbering the decision variables, we may wish to use more meaningful indices
in our model. For instance, the problem data may be given in file(s) using string indices such as
the file foliocpplp.dat we now wish to read:

! Return
"treasury" 5
"hardware" 17
"theater" 26
"telecom" 12
"brewery" 8
"highways" 9
"cars" 7
"bank" 6
"software" 31
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"electronics" 21

We modify our previous model as follows to work with this data file:

#include <iostream>
#include "xprb_cpp.h"

using namespace std;
using namespace ::dashoptimization;

#define DATAFILE "foliocpplp.dat"

#define NSHARES 10 // Number of shares
#define NRISK 5 // Number of high-risk shares
#define NNA 4 // Number of North-American shares

double RET[NSHARES]; // Estimated return in investment
char RISK[][100] = {"hardware", "theater", "telecom", "software",

"electronics"}; // High-risk values among shares
char NA[][100] = {"treasury", "hardware", "theater", "telecom"};

// Shares issued in N.-America

XPRBindexSet SHARES; // Set of shares

XPRBprob p("FolioLP"); // Initialize a new problem in BCL

void readData(void)
{
double value;
int s;
FILE *datafile;
char name[100];

SHARES=p.newIndexSet("Shares",NSHARES); // Create the ‘SHARES’ index set

// Read ‘RET’ data from file
datafile=fopen(DATAFILE,"r");
for(s=0;s<NSHARES;s++)
{
XPRBreadlinecb(XPRB_FGETS, datafile, 200, "T g", name, &value);
RET[SHARES+=name]=value;
}
fclose(datafile);

SHARES.print(); // Print out the set contents
}

int main(int argc, char **argv)
{
int s;
XPRBexpr Risk,Na,Return,Cap;
XPRBvar frac[NSHARES]; // Fraction of capital used per share

// Read data from file
readData();

// Create the decision variables
for(s=0;s<NSHARES;s++) frac[s] = p.newVar("frac");

// Objective: total return
for(s=0;s<NSHARES;s++) Return += RET[s]*frac[s];
p.setObj(Return); // Set the objective function

// Limit the percentage of high-risk values
for(s=0;s<NRISK;s++) Risk += frac[SHARES[RISK[s]]];
p.newCtr("Risk", Risk <= 1.0/3);

// Minimum amount of North-American values
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for(s=0;s<NNA;s++) Na += frac[SHARES[NA[s]]];
p.newCtr("NA", Na >= 0.5);

// Spend all the capital
for(s=0;s<NSHARES;s++) Cap += frac[s];
p.newCtr("Cap", Cap == 1);

// Upper bounds on the investment per share
for(s=0;s<NSHARES;s++) frac[s].setUB(0.3);

// Solve the problem
p.setSense(XPRB_MAXIM);
p.lpOptimize("");

// Solution printing
cout << "Total return: " << p.getObjVal() << endl;
for(s=0;s<NSHARES;s++)
cout << SHARES[s] << ": " << frac[s].getSol()*100 << "%" << endl;

return 0;
}

The arrays RISK and NA now store indices in the form of strings and we have added a new object,
the index set SHARES that is defined while the return-on-investment values RET are read from the
data file. In this example we have initialized the index set with exactly the right size. This is not
really necessary since index sets may grow dynamically if more entries are added to them than
the initially allocated space. The actual set size can be obtained with the method getSize.

For reading the data we use the function XPRBreadlinecb. It will skip comments preceded by !
and any empty lines in the data file. The format string "T g" indicates that we wish to read a
text string (surrounded by single or double quotes if it contains blanks) followed by a real
number, the two separated by spaces (including tabulation). If the data file used another
separator sign such as ‘,’ then the format string could be changed accordingly (e.g. "T,g").

In the model itself, the definition of the linear expressions Risk and Na has been adapted to the
new indices.

Another modification concerns the solution printing: we print the name of every share, not
simply its sequence number and hence the solution now gets displayed as follows:

Total return: 14.0667
treasury: 30%
hardware: 0%
theater: 20%
telecom: 0%
brewery: 6.66667%
highways: 30%
cars: 0%
bank: 0%
software: 13.3333%
electronics: 0%

10.4 Output functions and error handling

Most BCL modeling objects (XPRBprob, XPRBvar, XPRBctr, XPRBsos, and XPRBindexSet) have
a method print. For variables, depending on where the method is invoked either their bounds
or their solution value is printed: adding the line

frac[2].print();

before the call to the optimization will print the name of the variable and its bounds,
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frac2: [0,0.3]

whereas after the problem has been solved its solution value gets displayed:

frac2: 0.2

Whenever BCL detects an error it stops the program execution with an error message so that it
will usually not be necessary to test the return value of every operation. If a BCL program is
embedded into some larger application, it may be helpful to use the explicit initialization to
check early on that the software can be accessed correctly, for instance:

if(XPRB::init() != 0)
{
cout << "Initialization failed." << endl;
return 1;

}

The method getLPStat may be used to test the LP problem status. Only if the LP problem has
been solved successfully BCL will return or print out meaningful solution values:

char *LPSTATUS[] = {"not loaded", "optimal", "infeasible",
"worse than cutoff", "unfinished", "unbounded",
"cutoff in dual", "unsolved", "nonconvex"};

cout << "Problem status: " << LPSTATUS[p.getLPStat()] << endl;

10.5 Exporting matrices

If the optimization process with Xpress-Optimizer is started from within a BCL program (methods
lpOptimize or mipOptimize of XPRBprob), then the problem matrix is loaded in memory into
the solver without writing it out to a file (which would be expensive in terms of running time).
However, in certain cases it may still be required to be able to produce a matrix. With Xpress, the
user has the choice between two matrix formats: extended MPS and extended LP format, the
latter being in general more easily human-readable since constraints are printed in algebraic
form.

To export a matrix in MPS format add the following line to your BCL program, immediately
before or instead of the optimization statement; this will create the file Folio.mat in your
working directory:

p.exportProb(XPRB_MPS, "Folio");

For an LP format matrix use the following:

p.setSense(XPRB_MAXIM);
p.exportProb(XPRB_LP, "Folio");

The LP format contains information about the sense of optimization. Since the default is to
minimize, for maximization we first need to reset the sense. The resulting matrix file will have
the name Folio.lp.
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CHAPTER 11

Mixed Integer Programming

This chapter extends the model developed in Chapter 10 to a Mixed Integer Programming (MIP)
problem. It describes how to

� define different types of discrete variables,

� get the MIP solution status and understand the MIP optimization log produced by
Xpress-Optimizer.

Chapter 6 shows how to formulate and solve the same example with Mosel and in Chapter 16 the
problem is input and solved directly with Xpress-Optimizer.

11.1 Extended problem description

The investor is unwilling to have small share holdings. He looks at the following two possibilities
to formulate this constraint:

1. Limiting the number of different shares taken into the portfolio.

2. If a share is bought, at least a minimum amount 10% of the budget is spent on the share.

We are going to deal with these two constraints in two separate models.

11.2 MIP model 1: limiting the number of different shares

To be able to count the number of different values we are investing in, we introduce a second set
of variables buys in the LP model developed in Chapter 2. These variables are indicator variables
or binary variables. A variable buys takes the value 1 if the share s is taken into the portfolio and
0 otherwise.

We introduce the following constraint to limit the total number of assets to a maximum of
MAXNUM. It expresses the constraint that at most MAXNUM of the variables buys may take the
value 1 at the same time. ∑

s∈SHARES

buys ≤MAXNUM

We now still need to link the new binary variables buys with the variables fracs, the quantity of
every share selected into the portfolio. The relation that we wish to express is ‘if a share is
selected into the portfolio, then it is counted in the total number of values’ or ‘if fracs >0 then
buys = 1’. The following inequality formulates this implication:

∀s ∈ SHARES : fracs ≤ buys
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If, for some s, fracs is non-zero, then buys must be greater than 0 and hence 1. Conversely, if buys

is at 0, then fracs is also 0, meaning that no fraction of share s is taken into the portfolio. Notice
that these constraints do not prevent the possibility that buys is at 1 and fracs at 0. However, this
does not matter in our case, since any solution in which this is the case is also valid with both
variables, buys and fracs, at 0.

11.2.1 Implementation with BCL

We extend the LP model developed in Chapter 10 with the new variables and constraints. The
fact that the new variables are binary variables (i.e. they only take the values 0 and 1) is expressed
through the type XPRB_BV at their creation.

Another common type of discrete variable is an integer variable, that is, a variable that can only
take on integer values between given lower and upper bounds. These variables are defined in
BCL with the type XPRB_UI. In the following section (MIP model 2) we shall see yet another
example of discrete variables, namely semi-continuous variables.

#include <iostream>
#include "xprb_cpp.h"

using namespace std;
using namespace ::dashoptimization;

#define MAXNUM 4 // Max. number of shares to be selected

#define NSHARES 10 // Number of shares
#define NRISK 5 // Number of high-risk shares
#define NNA 4 // Number of North-American shares

double RET[] = {5,17,26,12,8,9,7,6,31,21}; // Estimated return in investment
int RISK[] = {1,2,3,8,9}; // High-risk values among shares
int NA[] = {0,1,2,3}; // Shares issued in N.-America

int main(int argc, char **argv)
{
int s;
XPRBprob p("FolioMIP1"); // Initialize a new problem in BCL
XPRBexpr Risk,Na,Return,Cap,Num;
XPRBvar frac[NSHARES]; // Fraction of capital used per share
XPRBvar buy[NSHARES]; // 1 if asset is in portfolio, 0 otherwise

// Create the decision variables (including upper bounds for ‘frac’)
for(s=0;s<NSHARES;s++)
{
frac[s] = p.newVar("frac", XPRB_PL, 0, 0.3);
buy[s] = p.newVar("buy", XPRB_BV);
}

// Objective: total return
for(s=0;s<NSHARES;s++) Return += RET[s]*frac[s];
p.setObj(Return); // Set the objective function

// Limit the percentage of high-risk values
for(s=0;s<NRISK;s++) Risk += frac[RISK[s]];
p.newCtr(Risk <= 1.0/3);

// Minimum amount of North-American values
for(s=0;s<NNA;s++) Na += frac[NA[s]];
p.newCtr(Na >= 0.5);

// Spend all the capital
for(s=0;s<NSHARES;s++) Cap += frac[s];
p.newCtr(Cap == 1);

// Limit the total number of assets
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for(s=0;s<NSHARES;s++) Num += buy[s];
p.newCtr(Num <= MAXNUM);

// Linking the variables
for(s=0;s<NSHARES;s++) p.newCtr(frac[s] <= buy[s]);

// Solve the problem
p.setSense(XPRB_MAXIM);
p.mipOptimize("");

// Solution printing
cout << "Total return: " << p.getObjVal() << endl;
for(s=0;s<NSHARES;s++)
cout << s << ": " << frac[s].getSol()*100 << "% (" << buy[s].getSol()

<< ")" << endl;

return 0;
}

Besides the additional variables and constraints, the choice of optimization algorithm needs to be
adapted to the problem type: we now wish to solve a MIP problem via Branch-and-Bound, and
we therefore use the method mipOptimize.

Just as with the LP problem in the previous chapter, it is usually helpful to check the solution
status before accessing the MIP solution—only if the MIP status is ‘unfinished (solution found)’ or
‘optimal’ will BCL print out a meaningful solution:

char *MIPSTATUS[] = {"not loaded", "not optimized", "LP optimized",
"unfinished (no solution)",
"unfinished (solution found)", "infeasible",
"optimal", "unbounded"};

cout << "Problem status: " << MIPSTATUS[p.getMIPStat()] << endl;

11.2.2 Analyzing the solution

As the result of the execution of our program we obtain the following output:

Reading Problem FolioMIP1
Problem Statistics

14 ( 514 spare) rows
20 ( 0 spare) structural columns
49 ( 5056 spare) non-zero elements

Global Statistics
10 entities 0 sets 0 set members

Maximizing MILP FolioMIP1
Original problem has:

14 rows 20 cols 49 elements 10 globals
Presolved problem has:

13 rows 19 cols 46 elements 9 globals
LP relaxation tightened

Concurrent solve, 0s
Dual Primal

objective suminf objective suminf
| p 15.600000 1.4000000

D 33.933333 .0000000 | p 15.600000 1.4000000
D 33.933333 .0000000 | P 14.066667 .0000000
----- interrupted ----- | ------- optimal -------

Deterministic concurrent statistics:
Dual: 5 simplex iterations, 10802312.490000s
Primal: 34 simplex iterations, 10821319.870444s

Primal solved problem

Its Obj Value S Ninf Nneg Sum Inf Time
34 14.066667 P 0 0 .000000 0
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Optimal solution found

Starting root cutting & heuristics

Its Type BestSoln BestBound Sols Add Del Gap GInf Time
+ 13.100000 14.066667 1 7.38% 0

1 K 13.100000 13.908571 1 2 0 6.17% 2 0
2 K 13.100000 13.568750 1 11 1 3.58% 3 0

*** Search completed *** Time: 0 Nodes: 1
Number of integer feasible solutions found is 1
Best integer solution found is 13.100000
Best bound is 13.100000
Uncrunching matrix
Problem status: optimal
Total return: 13.1
0: 20% (1)
1: 0% (0)
2: 30% (1)
3: 0% (0)
4: 20% (1)
5: 30% (1)
6: 0% (0)
7: 0% (0)
8: 0% (0)
9: 0% (0)

At the beginning we see the log of the execution of Xpress-Optimizer: the problem statistics (we
now have 14 constraints and 20 variables, out of which 10 are MIP variables, refered to as
‘entities’), the log of the execution of the LP algorithm (concurrently solving with primal and dual
simplex on a multi-core processor), the log of the built-in MIP heuristics (a solution with the value
13.1 has been found) and the automated cut generation (a total of 13 cuts of type ‘K’ = knapsack
have been generated). Since this problem is very small, it is solved by the MIP heuristics and the
addition of cuts (additional constraints that cut off parts of the LP solution space, but no MIP
solution) tightens the LP formulation in such a way that the solution to the LP relaxation becomes
integer feasible. The Branch-and-Bound search therefore stops at the first node and no log of the
Branch-and-Bound search gets displayed.

The output printed by our program tells us that the problem has been solved to optimality (i.e.
the MIP search has been completed and at least one integer feasible solution has been found).
The maximum return is now lower than in the original LP problem due to the additional
constraint. As required, only four different shares are selected to form the portfolio.

11.3 MIP model 2: imposing a minimum investment in each share

To formulate the second MIP model, we start again with the LP model from Chapters 2 and 10.
The new constraint we wish to formulate is ‘if a share is bought, at least a minimum amount 10%
of the budget is spent on the share.’ Instead of simply constraining every variable fracs to take a
value between 0 and 0.3, it now must either lie in the interval between 0.1 and 0.3 or take the
value 0. This type of variable is known as semi-continuous variable. In the new model, we replace
the bounds on the variables fracs by the following constraint:

∀s ∈ SHARES : fracs = 0 or 0. 1 ≤ fracs ≤ 0. 3

11.3.1 Implementation with BCL

The following program implements the MIP model 2. The semi-continuous variables are defined
by the type XPRB_SC. By default, BCL assumes a continuous limit of 1, se we need to set this value
to 0.1 with the method setLim.
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A similar type is available for integer variables that take either the value 0 or an integer value
between a given limit and their upper bound (so-called semi-continuous integers): XPRB_SI. A
third composite type is a partial integer which takes integer values from its lower bound to a
given limit value and is continuous beyond this value (marked by XPRB_PI).

#include <iostream>
#include "xprb_cpp.h"

using namespace std;
using namespace ::dashoptimization;

#define NSHARES 10 // Number of shares
#define NRISK 5 // Number of high-risk shares
#define NNA 4 // Number of North-American shares

double RET[] = {5,17,26,12,8,9,7,6,31,21}; // Estimated return in investment
int RISK[] = {1,2,3,8,9}; // High-risk values among shares
int NA[] = {0,1,2,3}; // Shares issued in N.-America

int main(int argc, char **argv)
{
int s;
XPRBprob p("FolioSC"); // Initialize a new problem in BCL
XPRBexpr Risk,Na,Return,Cap;
XPRBvar frac[NSHARES]; // Fraction of capital used per share

// Create the decision variables
for(s=0;s<NSHARES;s++)
{
frac[s] = p.newVar("frac", XPRB_SC, 0, 0.3);
frac[s].setLim(0.1);
}

// Objective: total return
for(s=0;s<NSHARES;s++) Return += RET[s]*frac[s];
p.setObj(Return); // Set the objective function

// Limit the percentage of high-risk values
for(s=0;s<NRISK;s++) Risk += frac[RISK[s]];
p.newCtr(Risk <= 1.0/3);

// Minimum amount of North-American values
for(s=0;s<NNA;s++) Na += frac[NA[s]];
p.newCtr(Na >= 0.5);

// Spend all the capital
for(s=0;s<NSHARES;s++) Cap += frac[s];
p.newCtr(Cap == 1);

// Solve the problem
p.setSense(XPRB_MAXIM);
p.mipOptimize("");

// Solution printing
cout << "Total return: " << p.getObjVal() << endl;
for(s=0;s<NSHARES;s++)
cout << s << ": " << frac[s].getSol()*100 << "%" << endl;

return 0;
}

When executing this program we obtain the following output (leaving out the part printed by
the Optimizer):

Total return: 14.0333
0: 30%
1: 0%
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2: 20%
3: 0%
4: 10%
5: 26.6667%
6: 0%
7: 0%
8: 13.3333%
9: 0%

Now five securities are chosen for the portfolio, each forming at least 10% and at most 30% of
the total investment. Due to the additional constraint, the optimal MIP solution value is again
lower than the initial LP solution value.
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CHAPTER 12

Quadratic Programming

In this chapter we turn the LP problem from Chapter 10 into a Quadratic Programming (QP)
problem, and the first MIP model from Chapter 11 into a Mixed Integer Quadratic Programming
(MIQP) problem. The chapter shows how to

� define quadratic objective functions,

� incrementally define and solve problems.

Chapter 7 shows how to formulate and solve the same examples with Mosel and in Chapter 17
the QP problem is input and solved directly with Xpress-Optimizer.

12.1 Problem description

The investor may also look at his portfolio selection problem from a different angle: instead of
maximizing the estimated return and limiting the portion of high-risk investments he now wishes
to minimize the risk whilst obtaining a certain target yield. He adopts the Markowitz idea of
getting estimates of the variance/covariance matrix of estimated returns on the securities. (For
example, hardware and software company worths tend to move together, but are oppositely
correlated with the success of theatrical production, as people go to the theater more when they
have become bored with playing with their new computers and computer games.) The return on
theatrical productions are highly variable, whereas the treasury bill yield is certain.

Question 1: Which investment strategy should the investor adopt to minimize the variance
subject to getting some specified minimum target yield?

Question 2: Which is the least variance investment strategy if the investor wants to choose at
most four different securities (again subject to getting some specified minimum target yield)?

The first question leads us to a Quadratic Programming problem, that is, a Mathematical
Programming problem with a quadratic objective function and linear constraints. The second
question necessitates the introduction of discrete variables to count the number of securities, and
so we obtain a Mixed Integer Quadratic Programming problem. The two cases will be discussed
separately in the following two sections.

12.2 QP

To adapt the model developed in Chapter 2 to the new way of looking at the problem, we need
to make the following changes:

� New objective function: mean variance instead of total return.
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� The risk-related constraint disappears.

� Addition of a new constraint: target yield.

The new objective function is the mean variance of the portfolio, namely:∑
s,t∈SHARES

VARst · fracs · fract

where VARst is the variance/covariance matrix of all shares. This is a quadratic objective function
(an objective function becomes quadratic either when a variable is squared, e.g., frac2

1, or when
two variables are multiplied together, e.g., frac1 · frac2).

The target yield constraint can be written as follows:∑
s∈SHARES

RETs · fracs ≥ TARGET

The limit on the North-American shares as well as the requirement to spend all the money, and
the upper bounds on the fraction invested into every share are retained. We therefore obtain the
following complete mathematical model formulation:

minimize
∑

s,t∈SHARES

VARst · fracs · fract∑
s∈NA

fracs ≥ 0. 5∑
s∈SHARES

fracs = 1

∑
s∈SHARES

RETs · fracs ≥ TARGET

∀s ∈ SHARES : 0 ≤ fracs ≤ 0. 3

12.2.1 Implementation with BCL

The estimated returns and the variance/covariance matrix are given in the data file
foliocppqp.dat:

! trs haw thr tel brw hgw car bnk sof elc
0.1 0 0 0 0 0 0 0 0 0 ! treasury
0 19 -2 4 1 1 1 0.5 10 5 ! hardware
0 -2 28 1 2 1 1 0 -2 -1 ! theater
0 4 1 22 0 1 2 0 3 4 ! telecom
0 1 2 0 4 -1.5 -2 -1 1 1 ! brewery
0 1 1 1 -1.5 3.5 2 0.5 1 1.5 ! highways
0 1 1 2 -2 2 5 0.5 1 2.5 ! cars
0 0.5 0 0 -1 0.5 0.5 1 0.5 0.5 ! bank
0 10 -2 3 1 1 1 0.5 25 8 ! software
0 5 -1 4 1 1.5 2.5 0.5 8 16 ! electronics

We may read this datafile with the function XPRBreadarrlinecb: all comments preceded by !
and also empty lines are skipped. We read an entire line at once indicating the format of an entry
(‘g’) and the separator (any number of spaces or tabulations).

For the definition of the objective function we now use a quadratic expression (equally
represented by the class XPRBexpr). Since we now wish to minimize the problem, we use the
default optimization sense setting and optimization as a continuous problem is again started
with the method lpOptimize (with empty string argument indicating the default algorithm).
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#include <iostream>
#include "xprb_cpp.h"

using namespace std;
using namespace ::dashoptimization;

#define DATAFILE "foliocppqp.dat"

#define TARGET 9 // Target yield
#define MAXNUM 4 // Max. number of different assets

#define NSHARES 10 // Number of shares
#define NNA 4 // Number of North-American shares

double RET[] = {5,17,26,12,8,9,7,6,31,21}; // Estimated return in investment
int NA[] = {0,1,2,3}; // Shares issued in N.-America
double VAR[NSHARES][NSHARES]; // Variance/covariance matrix of

// estimated returns

int main(int argc, char **argv)
{
int s,t;
XPRBprob p("FolioQP"); // Initialize a new problem in BCL
XPRBexpr Na,Return,Cap,Num,Variance;
XPRBvar frac[NSHARES]; // Fraction of capital used per share
FILE *datafile;

// Read ‘VAR’ data from file
datafile=fopen(DATAFILE,"r");
for(s=0;s<NSHARES;s++)
XPRBreadarrlinecb(XPRB_FGETS, datafile, 200, "g ", VAR[s], NSHARES);
fclose(datafile);

// Create the decision variables
for(s=0;s<NSHARES;s++)
frac[s] = p.newVar(XPRBnewname("frac(%d)",s+1), XPRB_PL, 0, 0.3);

// Objective: mean variance
for(s=0;s<NSHARES;s++)
for(t=0;t<NSHARES;t++) Variance += VAR[s][t]*frac[s]*frac[t];
p.setObj(Variance); // Set the objective function

// Minimum amount of North-American values
for(s=0;s<NNA;s++) Na += frac[NA[s]];
p.newCtr(Na >= 0.5);

// Spend all the capital
for(s=0;s<NSHARES;s++) Cap += frac[s];
p.newCtr(Cap == 1);

// Target yield
for(s=0;s<NSHARES;s++) Return += RET[s]*frac[s];
p.newCtr(Return >= TARGET);

// Solve the problem
p.lpOptimize("");

// Solution printing
cout << "With a target of " << TARGET << " minimum variance is " <<

p.getObjVal() << endl;
for(s=0;s<NSHARES;s++)
cout << s << ": " << frac[s].getSol()*100 << "%" << endl;

return 0;
}

This program produces the following solution output with a dual-core processor (notice that the
default algorithm for solving QP problems is Newton-Barrier, not the Simplex as in all previous
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examples):

Reading Problem FolioQP
Problem Statistics

3 ( 0 spare) rows
10 ( 0 spare) structural columns
24 ( 0 spare) non-zero elements
76 quadratic elements

Global Statistics
0 entities 0 sets 0 set members

Minimizing QP FolioQP
Original problem has:

3 rows 10 cols 24 elements
76 qobjelem

Presolved problem has:
3 rows 10 cols 24 elements
76 qobjelem

Checking convexity took 0 seconds
Barrier cache sizes : L1=32K L2=4096K
Cores per CPU (CORESPERCPU): 2
Barrier starts, using up to 2 threads, with L2 cache 2048K per thread
Matrix ordering - Dense cols.: 9 NZ(L): 92 Flops: 584

Its P.inf D.inf U.inf Primal obj. Dual obj. Compl.
0 1.90e+01 1.00e+03 3.70e+00 8.7840000e+02 -3.8784000e+03 4.4e+04
1 2.70e-01 2.50e+00 5.26e-02 8.2966236e+00 -2.6938426e+03 3.2e+03
2 7.35e-04 2.93e-03 1.43e-04 5.2443717e+00 -9.5768733e+01 1.0e+02
3 3.31e-05 1.32e-04 6.45e-06 4.1146720e+00 -1.0420241e+01 1.5e+01
4 6.94e-17 3.33e-15 2.78e-17 1.6111574e+00 -2.5214717e+00 4.1e+00
5 3.47e-17 1.33e-15 5.55e-17 7.2642096e-01 3.1286182e-01 4.1e-01
6 9.89e-17 1.62e-15 5.55e-17 5.6822910e-01 5.2583251e-01 4.2e-02
7 1.46e-16 5.71e-16 1.39e-17 5.5899605e-01 5.5588942e-01 3.1e-03
8 1.42e-16 9.97e-16 1.59e-17 5.5758472e-01 5.5727257e-01 3.1e-04
9 3.16e-17 7.81e-16 2.78e-17 5.5740972e-01 5.5738488e-01 2.5e-05
10 5.38e-17 7.86e-16 2.78e-17 5.5739376e-01 5.5739329e-01 4.7e-07

Barrier method finished in 0 seconds
Uncrunching matrix

Its Obj Value S Ninf Nneg Sum Inf Time
0 .557394 B 0 0 .000000 0

Optimal solution found
With a target of 9 minimum variance is 0.557394
0: 30%
1: 7.15401%
2: 7.38237%
3: 5.46362%
4: 12.6561%
5: 5.91283%
6: 0.333491%
7: 29.9979%
8: 1.0997%
9: 6.97039e-06%

12.3 MIQP

We now wish to express the fact that at most a given number MAXNUM of different assets may
be selected into the portfolio, subject to all other constraints of the previous QP model. In
Chapter 11 we have already seen how this can be done, namely by introducing an additional set
of binary decision variables buys that are linked logically to the continuous variables:

∀s ∈ SHARES : fracs ≤ buys

Through this relation, a variable buys will be at 1 if a fraction fracs greater than 0 is selected into
the portfolio. If, however, buys equals 0, then fracs must also be 0.

Quadratic Programming c©Copyright 2003–2014 Fair Isaac Corporation. All rights reserved. page 83



To limit the number of different shares in the portfolio, we then define the following constraint:∑
s∈SHARES

buys ≤MAXNUM

12.3.1 Implementation with BCL

We may modify the previous QP model or simply append the following lines to the program of
the previous section, just after the solution printing: the problem is then solved once as a QP and
once as a MIQP in a single program run.

XPRBvar buy[NSHARES]; // 1 if asset is in portfolio, 0 otherwise

// Create the decision variables
for(s=0;s<NSHARES;s++)
buy[s] = p.newVar(XPRBnewname("buy(%d)",s+1), XPRB_BV);

// Limit the total number of assets
for(s=0;s<NSHARES;s++) Num += buy[s];
p.newCtr(Num <= MAXNUM);

// Linking the variables
for(s=0;s<NSHARES;s++) p.newCtr(frac[s] <= buy[s]);

// Solve the problem
p.mipOptimize("");

// Solution printing
cout << "With a target of " << TARGET << " and at most " << MAXNUM <<

" assets, minimum variance is " << p.getObjVal() << endl;
for(s=0;s<NSHARES;s++)
cout << s << ": " << frac[s].getSol()*100 << "% (" << buy[s].getSol()

<< ")" << endl;

When executing the MIQP model, we obtain the following solution output:

Reading Problem FolioQP
Problem Statistics

14 ( 514 spare) rows
20 ( 0 spare) structural columns
54 ( 5056 spare) non-zero elements
76 quadratic elements

Global Statistics
10 entities 0 sets 0 set members

Minimizing MIQP FolioQP
Original problem has:

14 rows 20 cols 54 elements 10 globals
76 qobjelem

Presolved problem has:
14 rows 20 cols 54 elements 10 globals
76 qobjelem

LP relaxation tightened
Checking convexity took 0 seconds
Crash basis containing 0 structural columns created

Its Obj Value S Ninf Nneg Sum Inf Time
0 .000000 p 1 0 .100000 0
8 .000000 p 0 0 .000000 0
8 4.609000 p 0 0 .000000 0

Its Obj Value S Nsft Nneg Dual Inf Time
27 .557393 QP 0 0 .000000 0

QP solution found
Optimal solution found

Starting root cutting & heuristics
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Its Type BestSoln BestBound Sols Add Del Gap GInf Time
+ 4.094716 .557393 1 86.39% 0
+ 1.839007 .557393 2 69.69% 0
+ 1.825618 .557393 3 69.47% 0
+ 1.419003 .557393 4 60.72% 0

1 K 1.419003 .557393 4 3 0 60.72% 7 0
2 K 1.419003 .557393 4 9 2 60.72% 7 0
3 K 1.419003 .557393 4 7 6 60.72% 7 0
4 K 1.419003 .557393 4 3 6 60.72% 7 0
5 K 1.419003 .557393 4 7 2 60.72% 7 0
6 K 1.419003 .557676 4 18 10 60.70% 7 0
7 K 1.419003 .561133 4 6 16 60.46% 7 0
8 K 1.419003 .566040 4 7 4 60.11% 7 0
9 K 1.419003 .582382 4 19 7 58.96% 8 0
10 K 1.419003 .587384 4 4 17 58.61% 9 0
11 K 1.419003 .590887 4 7 2 58.36% 8 0
12 K 1.419003 .595128 4 6 4 58.06% 9 0
13 K 1.419003 .598643 4 9 4 57.81% 8 0
14 K 1.419003 .598924 4 2 12 57.79% 7 0
15 K 1.419003 .599261 4 5 1 57.77% 7 0
16 K 1.419003 .600166 4 3 4 57.71% 7 0
17 K 1.419003 .600166 4 0 2 57.71% 7 0

Heuristic search started
Heuristic search stopped

Cuts in the matrix : 16
Cut elements in the matrix : 132
Will try to keep branch and bound tree memory usage below 1.6Gb

Starting tree search with up to 2 threads (deterministic mode)

Node BestSoln BestBound Sols Active Depth Gap GInf Time
+ 24 1.248762 1.045795 5 3 7 16.25% 0

*** Search completed *** Time: 0 Nodes: 29
Number of integer feasible solutions found is 5
Best integer solution found is 1.248762
Uncrunching matrix
With a target of 9 and at most 4 assets, minimum variance is 1.24876
0: 30% (1)
1: 20% (1)
2: 0% (0)
3: 0% (0)
4: 23.8095% (1)
5: 26.1905% (1)
6: 0% (0)
7: 0% (0)
8: 0% (0)
9: 0% (0)

The log of the Branch-and-Bound search tells us this time that 5 integer feasible solutions have
been found (all by the MIP heuristics) and a total of 29 nodes have been enumerated to complete
the search.With the additional constraint on the number of different assets the minimum
variance is more than twice as large as in the QP problem.
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CHAPTER 13

Heuristics

In this chapter we show a simple binary variable fixing solution heuristic that involves a heuristic
solution procedure interacting with Xpress-Optimizer through

� parameter settings,

� saving and recovering bases, and

� modifications of variable bounds.

Chapter 8 shows how to implement the same heuristic with Mosel.

13.1 Binary variable fixing heuristic

The heuristic we wish to implement should perform the following steps:

1. Solve the LP relaxation and save the basis of the optimal solution

2. Rounding heuristic: Fix all variables ‘buy’ to 0 if they are close to 0, and to 1 if they have a
relatively large value.

3. Solve the resulting MIP problem.

4. If an integer feasible solution was found, save the value of the best solution.

5. Restore the original problem by resetting all variables to their original bounds, and load the
saved basis.

6. Solve the original MIP problem, using the heuristic solution as cutoff value.

Step 2: Since the fraction variables frac have an upper bound of 0.3, as a ‘relatively large value’ in
this case we may choose 0.2. In other applications, for binary variables a more suitable choice may
be 1− ε, where ε is a very small value such as 10−5.

Step 6: Setting a cutoff value means that we only search for solutions that are better than this
value. If the LP relaxation of a node is worse than this value it gets cut off, because this node and
its descendants can only lead to integer feasible solutions that are even worse than the LP
relaxation.

c©Copyright 2003–2014 Fair Isaac Corporation. All rights reserved. page 86



13.2 Implementation with BCL

For the implementation of the variable fixing solution heuristic we work with the MIP 1 model
from Chapter 11. Through the definition of the heuristic in a separate function we only make
minimal changes to the model itself: before solving our problem with the standard call to the
method mipOptimize we execute our own solution heuristic and the solution printing also has
been adapted.

#include <iostream>
#include "xprb_cpp.h"
#include "xprs.h"

using namespace std;
using namespace ::dashoptimization;

#define MAXNUM 4 // Max. number of shares to be selected

#define NSHARES 10 // Number of shares
#define NRISK 5 // Number of high-risk shares
#define NNA 4 // Number of North-American shares

void solveHeur();

double RET[] = {5,17,26,12,8,9,7,6,31,21}; // Estimated return in investment
int RISK[] = {1,2,3,8,9}; // High-risk values among shares
int NA[] = {0,1,2,3}; // Shares issued in N.-America

XPRBprob p("FolioMIPHeur"); // Initialize a new problem in BCL
XPRBvar frac[NSHARES]; // Fraction of capital used per share
XPRBvar buy[NSHARES]; // 1 if asset is in portfolio, 0 otherwise

int main(int argc, char **argv)
{
int s;
XPRBexpr Risk,Na,Return,Cap,Num;

// Create the decision variables (including upper bounds for ‘frac’)
for(s=0;s<NSHARES;s++)
{
frac[s] = p.newVar("frac", XPRB_PL, 0, 0.3);
buy[s] = p.newVar("buy", XPRB_BV);
}

// Objective: total return
for(s=0;s<NSHARES;s++) Return += RET[s]*frac[s];
p.setObj(Return); // Set the objective function

// Limit the percentage of high-risk values
for(s=0;s<NRISK;s++) Risk += frac[RISK[s]];
p.newCtr(Risk <= 1.0/3);

// Minimum amount of North-American values
for(s=0;s<NNA;s++) Na += frac[NA[s]];
p.newCtr(Na >= 0.5);

// Spend all the capital
for(s=0;s<NSHARES;s++) Cap += frac[s];
p.newCtr(Cap == 1);

// Limit the total number of assets
for(s=0;s<NSHARES;s++) Num += buy[s];
p.newCtr(Num <= MAXNUM);

// Linking the variables
for(s=0;s<NSHARES;s++) p.newCtr(frac[s] <= buy[s]);

// Solve problem heuristically
p.setSense(XPRB_MAXIM);
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solveHeur();

// Solve the problem
p.mipOptimize("");

// Solution printing
if(p.getMIPStat()==4 || p.getMIPStat()==6)
{
cout << "Exact solution: Total return: " << p.getObjVal() << endl;
for(s=0;s<NSHARES;s++)
cout << s << ": " << frac[s].getSol()*100 << "%" << endl;

}
else
cout << "Heuristic solution is optimal." << endl;

return 0;
}

void solveHeur()
{
XPRBbasis basis;
int s, ifgsol;
double solval, bsol[NSHARES],TOL;

XPRSsetintcontrol(p.getXPRSprob(), XPRS_CUTSTRATEGY, 0);
// Disable automatic cuts

XPRSsetintcontrol(p.getXPRSprob(), XPRS_HEURSTRATEGY, 0);
// Disable MIP heuristics

XPRSsetintcontrol(p.getXPRSprob(), XPRS_PRESOLVE, 0);
// Switch presolve off

XPRSgetdblcontrol(p.getXPRSprob(), XPRS_FEASTOL, &TOL);
// Get feasibility tolerance

p.mipOptimize("l"); // Solve the LP-relaxation
basis=p.saveBasis(); // Save the current basis

// Fix all variables ‘buy’ for which ‘frac’ is at 0 or at a relatively
// large value
for(s=0;s<NSHARES;s++)
{
bsol[s]=buy[s].getSol(); // Get the solution values of ‘frac’
if(bsol[s] < TOL) buy[s].setUB(0);
else if(bsol[s] > 0.2-TOL) buy[s].setLB(1);
}

p.mipOptimize("c"); // Solve the MIP-problem
ifgsol=0;
if(p.getMIPStat()==4 || p.getMIPStat()==6)
{ // If an integer feas. solution was found
ifgsol=1;
solval=p.getObjVal(); // Get the value of the best solution
cout << "Heuristic solution: Total return: " << p.getObjVal() << endl;
for(s=0;s<NSHARES;s++)
cout << s << ": " << frac[s].getSol()*100 << "%" << endl;

}

// Reset variables to their original bounds
for(s=0;s<NSHARES;s++)
if((bsol[s] < TOL) || (bsol[s] > 0.2-TOL))
{
buy[s].setLB(0);
buy[s].setUB(1);
}

p.loadBasis(basis); /* Load the saved basis: bound changes are
immediately passed on from BCL to the
Optimizer if the problem has not been modified
in any other way, so that there is no need to
reload the matrix */
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basis.reset(); // No need to store the saved basis any longer
if(ifgsol==1)
XPRSsetdblcontrol(p.getXPRSprob(), XPRS_MIPABSCUTOFF, solval+TOL);

// Set the cutoff to the best known solution
}

The implementation of the heuristic certainly requires some explanations.

In this example for the first time we use the direct access to Xpress-Optimizer. To do so, we need
to include the Optimizer header file xprs.h. The Optimizer functions are applied to the problem
representation (of type XPRSprob) held by the Optimizer which can be retrieved with the
method getXPRSprob of the BCL problem. For more detail on how to use the BCL and Optimizer
libaries in combination the reader is refered to the ‘BCL Reference Manual’. The complete
documentation of all Optimizer functions and parameters is provided in the ‘Optimizer Reference
Manual’.

Parameters: The solution heuristic starts with parameter settings for the Xpress-Optimizer.
Switching off the automated cut generation (parameter XPRS_CUTSTRATEGY) and the MIP
heuristics (parameter XPRS_HEURSTRATEGY) is optional, whereas it is required in our case to
disable the presolve mechanism (a treatment of the matrix that tries to reduce its size and
improve its numerical properties, set with parameter XPRS_PRESOLVE), because we interact with
the problem in the Optimizer in the course of its solution and this is only possible correctly if the
matrix has not been modified by the Optimizer.

In addition to the parameter settings we also retrieve the feasibility tolerance used by
Xpress-Optimizer: the Optimizer works with tolerance values for integer feasibility and solution
feasibility that are typically of the order of 10−6 by default. When evaluating a solution, for
instance by performing comparisons, it is important to take into account these tolerances.

The fine tuning of output printing mentioned in Chapter 10 can be obtained by setting the
parameters XPRS_LPLOG and XPRS_MIPLOG (both to be set with function XPRSsetintcontrol).

Optimization calls: We use the optimization method mipOptimize with the argument "l",
indicating that we only want to solve the top node LP relaxation (and not yet the entire MIP
problem). To continue with MIP solving from the point where we have stopped the algorithm we
use the argument "c".

Saving and loading bases: To speed up the solution process, we save (in memory) the current basis
of the Simplex algorithm after solving the initial LP relaxation, before making any changes to the
problem. This basis is loaded again at the end, once we have restored the original problem. The
MIP solution algorithm then does not have to re-solve the LP problem from scratch, it resumes
the state where it was ‘interrupted’ by our heuristic.

Bound changes: When a problem has already been loaded into the Optimizer (e.g. after
executing an optimization statement or following an explicit call to method loadMat) bound
changes via setLB and setUB are passed on directly to the Optimizer. Any other changes
(addition or deletion of constraints or variables) always lead to a complete reloading of the
problem.

The program produces the following output. As can be seen, when solving the original problem
for the second time the Simplex algorithm performs 0 iterations because it has been started with
the basis of the optimal solution saved previously.

Reading Problem FolioMIPHeur
Problem Statistics

14 ( 0 spare) rows
20 ( 0 spare) structural columns
49 ( 0 spare) non-zero elements

Global Statistics
10 entities 0 sets 0 set members

Maximizing MILP FolioMIPHeur
Original problem has:

14 rows 20 cols 49 elements 10 globals
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Concurrent solve, 0s
Dual Primal

objective suminf objective suminf
| p 14.400000 .3666667
| p 14.066667 .0000000

----- interrupted ----- | ------- optimal -------
Deterministic concurrent statistics:

Dual: 5 simplex iterations, 10802312.490000s
Primal: 17 simplex iterations, 10821319.870444s

Primal solved problem

Its Obj Value S Ninf Nneg Sum Inf Time
17 14.066667 P 0 0 .000000 0

Optimal solution found

*** Search unfinished *** Time: 0
Number of integer feasible solutions found is 0
Best bound is 14.066667

Starting root cutting & heuristics

Its Type BestSoln BestBound Sols Add Del Gap GInf Time
+ 13.100000 14.066667 1 7.38% 0
Heuristic search started
Heuristic search stopped

*** Search completed *** Time: 0 Nodes: 1
Number of integer feasible solutions found is 1
Best integer solution found is 13.100000
Best bound is 13.100000
Heuristic solution: Total return: 13.1
0: 20%
1: 0%
2: 30%
3: 0%
4: 20%
5: 30%
6: 0%
7: 0%
8: 0%
9: 0%
Maximizing MILP FolioMIPHeur
Original problem has:

14 rows 20 cols 49 elements 10 globals

Concurrent solve, 0s
Dual Primal

objective suminf objective suminf
D 14.066667 .0000000
D 14.066667 .0000000 | p 14.066667 .0000000
------- optimal ------- | ----- interrupted -----

Deterministic concurrent statistics:
Dual: 0 simplex iterations, 10802312.490000s
Primal: 0 simplex iterations, 10821319.870444s

Dual solved problem

Its Obj Value S Ninf Nneg Sum Inf Time
0 14.066667 P 0 0 .000000 0

Optimal solution found

Starting root cutting & heuristics

Its Type BestSoln BestBound Sols Add Del Gap GInf Time
Heuristic search started
Heuristic search stopped
Will try to keep branch and bound tree memory usage below 1.6Gb

Starting tree search with up to 2 threads (deterministic mode)

Node BestSoln BestBound Sols Active Depth Gap GInf Time

*** Search completed *** Time: 0 Nodes: 5
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Problem is integer infeasible
Number of integer feasible solutions found is 0
Best bound is 13.100001
Heuristic solution is optimal.

Observe that the heuristic found a solution of 13.1, and that the MIP optimizer without the
heuristic could not find a better solution (hence the infeasible message). The heuristic solution is
therefore optimal.
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CHAPTER 14

Matrix input

In this chapter we show how to

� initialize Xpress-Optimizer,

� load matrices in MPS or LP format into the Optimizer,

� solve a problem, and

� write out the solution to a file.

14.1 Matrix files

With Xpress, the user has the choice between two matrix formats: extended MPS and extended
LP format, the latter being in general more easily human-readable since constraints are printed in
algebraic form. Such matrices may be written out by Xpress-Optimizer, but more likely they will
have been generated by some other tool.

If the optimization process with Xpress-Optimizer is started from within a Mosel or BCL program,
then the problem matrix is loaded in memory into the solver without writing it out to a file
(which would be expensive in terms of running time). However, both tools may also be used to
produce matrix files (see Chapter 9 for matrix generation with Mosel and Chapter 10 for BCL).

14.2 Implementation

To load a matrix into Xpress-Optimizer we need to perform the following steps:

1. Initialize Xpress-Optimizer.

2. Create a new problem.

3. Read the matrix file.

The following C program folioinput.c (similar interfaces exist for Java and Visual Basic) shows
how to load a matrix file, solve it, and write out the results. For clarity’s sake we have omitted all
error checking in this program. In general it is recommended to test the return value of the
initialization function and also whether the problem has been created and read correctly.

To use Xpress-Optimizer, we need to include the header file xprs.h.
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#include <stdio.h>
#include "xprs.h"

int main(int argc, char **argv)
{
XPRSprob prob;

XPRSinit(NULL); /* Initialize Xpress-Optimizer */
XPRScreateprob(&prob); /* Create a new problem */

XPRSreadprob(prob, "Folio", ""); /* Read the problem matrix */

XPRSchgobjsense(prob, XPRS_OBJ_MAXIMIZE); /* Set sense to maximization */
XPRSlpoptimize(prob, ""); /* Solve the problem */

XPRSwriteprtsol(prob, "Folio.prt", ""); /* Write results to ‘Folio.prt’ */

XPRSdestroyprob(prob); /* Delete the problem */
XPRSfree(); /* Terminate Xpress */

return 0;
}

14.3 Compilation and program execution

If you have followed the standard installation procedure of Xpress-Optimizer, you may compile
this file with the following command under Windows:

cl /MD /I%XPRESSDIR%\include %XPRESSDIR%\lib\xprs.lib foliomat.c

For Linux or Solaris use

cc -D_REENTRANT -I${XPRESSDIR}/include -L${XPRESSDIR}/lib foliomat.c -o foliomat -lxprs

For other systems please refer to the example makefile provided with the corresponding
distribution.

If we run this program with the matrix Folio.mat produced by BCL for the LP example problem
of Chapter 2, then we obtain an output file Folio.prt with the following contents:

Problem Statistics
Matrix FolioLP
Objective *OBJ*

RHS *RHS*
Problem has 4 rows and 10 structural columns

Solution Statistics
Maximization performed
Optimal solution found after 5 iterations
Objective function value is 14.066659

Rows Section
Number Row At Value Slack Value Dual Value RHS

N 1 *OBJ* BS 14.066659 -14.066659 .000000 .000000
E 2 Cap EQ 1.000000 .000000 8.000000 1.000000
G 3 NA LL .500000 .000000 -5.000000 .500000
L 4 Risk UL .333333 .000000 23.000000 .333333

Columns Section
Number Column At Value Input Cost Reduced Cost

C 5 frac UL .300000 5.000000 2.000000
C 6 frac_1 LL .000000 17.000000 -9.000000

Matrix input c©Copyright 2003–2014 Fair Isaac Corporation. All rights reserved. page 94



C 7 frac_2 BS .200000 26.000000 .000000
C 8 frac_3 LL .000000 12.000000 -14.000000
C 9 frac_4 BS .066667 8.000000 .000000
C 10 frac_5 UL .300000 9.000000 1.000000
C 11 frac_6 LL .000000 7.000000 -1.000000
C 12 frac_7 LL .000000 6.000000 -2.000000
C 13 frac_8 BS .133333 31.000000 .000000
C 14 frac_9 LL .000000 21.000000 -10.000000

The upper half contains some statistics concerning the problem size and the solution algorithm:
the optimal LP solution found has a value of 14.066659. The Rows Section gives detailed
solution information for the constraints in the problem. The solution values for the decision
variables are located in the column labeled Value of the Columns Section.
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CHAPTER 15

Inputting and solving a
Linear Programming problem

In this chapter we take the example formulated in Chapter 2 and show how to input and solve
this problem with Xpress-Optimizer. In detail, we shall discuss the following topics:

� transformation of an LP model into matrix format,

� LP problem input with Xpress-Optimizer,

� solving and solution output.

Chapter 3 shows how to formulate and solve this example with Mosel and Chapter 10 does the
same for BCL.

15.1 Matrix representation

As a first step in the transformation of the mathematical problem into the form required by the
LP problem input function of Xpress-Optimizer we write the problem in the form of a table
where the columns represent the decision variables and the rows are the constraints. All non-zero
coefficients are then entered into this table, resulting in the problem matrix, completed by the
operators and the constant terms (the latter are usually refered to as the right hand side, RHS,
values).

Table 15.1: LP matrix

frac1 frac2 frac3 frac4 frac5 frac6 frac7 frac8 frac9 frac10

0 1 2 3 4 5 6 7 8 9 Oper. RHS

Risk 0 1
2

1
5

1
8

1
15

1
17 ≤ 1/3

MinNA 1 1
0

1
3

1
6

1
9 ≥ 0.5

Allfrac 2 1
1

1
4

1
7

1
10

1
11

1
12

1
13

1
14

1
16

1
18

= 1

↑ ↑
rowidx matval

colbeg 0 2 5 8 11 12 13 14 15 17 19

nelem 2 3 3 3 1 1 1 1 2 2

The matrix specified to Xpress-Optimizer does not consist of the full number_of_rows x
number_of_columns table; instead, only the list of non-zero coefficients is given and an
indication where they are located. The superscripts in the table above indicate the order of the
matrix entries in this list. The coefficient values will be stored in the array matval, the
corresponding row numbers in the array rowidx, the values of the first few entries of these
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arrays are printed in italics to highlight them (see the code example in the following section for
the full definition of these arrays). To complete this information, the array colbeg contains the
index of the first entry per column and the array nelem the number of entries per column.

15.2 Implementation with Xpress-Optimizer

The following C program foliolp.c shows how to input and solve this LP problem with
Xpress-Optimizer. We have also added printing of the solution. Before trying to access the
solution, the LP problem status is checked (see the ‘Optimizer Reference Manual’ for further
explanation). To use Xpress-Optimizer, we need to include the header file xprs.h.

To load a problem into Xpress-Optimizer we need to perform the following steps:

1. Initialize Xpress-Optimizer.

2. Create a new problem.

3. Load the matrix data.

#include <stdio.h>
#include <stdlib.h>
#include "xprs.h"

int main(int argc, char **argv)
{
XPRSprob prob;
int s, status;
double objval, *sol;

/* Problem parameters */
int ncol = 10;
int nrow = 3;

/* Row data */
char rowtype[] = { ’L’,’G’,’E’};
double rhs[] = {1.0/3,0.5, 1};

/* Column data */
double obj[] = { 5, 17, 26, 12, 8, 9, 7, 6, 31, 21};
double lb[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
double ub[] = {0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3};

/* Matrix coefficient data */
int colbeg[] = {0, 2, 5, 8, 11,12,13,14,15, 17, 19};
int rowidx[] = {1,2,0,1,2,0,1,2,0,1,2, 2, 2, 2, 2, 0,2, 0,2};
double matval[] = {1,1,1,1,1,1,1,1,1,1,1, 1, 1, 1, 1, 1,1, 1,1};

XPRSinit(NULL); /* Initialize Xpress-Optmizer */
XPRScreateprob(&prob); /* Create a new problem */

/* Load the problem matrix */
XPRSloadlp(prob, "FolioLP", ncol, nrow, rowtype, rhs, NULL,

obj, colbeg, NULL, rowidx, matval, lb, ub);

XPRSchgobjsense(prob, XPRS_OBJ_MAXIMIZE); /* Set sense to maximization */
XPRSlpoptimize(prob, ""); /* Solve the problem */

XPRSgetintattrib(prob, XPRS_LPSTATUS, &status); /* Get LP sol. status */

if(status == XPRS_LP_OPTIMAL)
{
XPRSgetdblattrib(prob, XPRS_LPOBJVAL, &objval); /* Get objective value */
printf("Total return: %g\n", objval);
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sol = (double *)malloc(ncol*sizeof(double));
XPRSgetlpsol(prob, sol, NULL, NULL, NULL); /* Get primal solution */
for(s=0;s<ncol;s++) printf("%d: %g%%\n", s+1, sol[s]*100);
}

XPRSdestroyprob(prob); /* Delete the problem */
XPRSfree(); /* Terminate Xpress */

return 0;
}

Instead of defining colbeg with one extra entry for the last+1 column we may give the numbers
of coefficients per column in the array nelem:

/* Matrix coefficient data */
int colbeg[] = {0, 2, 5, 8, 11,12,13,14,15, 17};
int nelem[] = {2, 3, 3, 3, 1, 1, 1, 1, 2, 2};
int rowidx[] = {1,2,0,1,2,0,1,2,0,1,2, 2, 2, 2, 2, 0,2, 0,2};
double matval[] = {1,1,1,1,1,1,1,1,1,1,1, 1, 1, 1, 1, 1,1, 1,1};

...
/* Load the problem matrix */

XPRSloadlp(prob, "FolioLP", ncol, nrow, rowtype, rhs, NULL,
obj, colbeg, nelem, rowidx, matval, lb, ub);

The seventh argument of the function XPRSloadlp remains empty for our problem since it is
reserved for range information on constraints.

The second argument of the optimization function XPRSlpoptimize indicates the algorithm to
be used: an empty string stands for the default LP algorithm. After solving the problem we check
whether the LP has been solved and if so, we retrieve the objective function value and the primal
solution for the decision variables.

15.3 Compilation and program execution

If you have followed the standard installation procedure of Xpress-Optimizer, you may compile
this file with the following command under Windows:

cl /MD /I%XPRESSDIR%\include %XPRESSDIR%\lib\xprs.lib foliolp.c

For Linux or Solaris use

cc -D_REENTRANT -I${XPRESSDIR}/include -L${XPRESSDIR}/lib foliolp.c -o foliolp -lxprs

For other systems please refer to the example makefile provided with the corresponding
distribution.

Running the resulting program will generate the following output:

Total return: 14.0667
1: 30%
2: 0%
3: 20%
4: 0%
5: 6.66667%
6: 30%
7: 0%
8: 0%
9: 13.3333%
10: 0%
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Under Unix this is preceded by the log of Xpress-Optimizer:

Reading Problem FolioLP
Problem Statistics

3 ( 0 spare) rows
10 ( 0 spare) structural columns
19 ( 0 spare) non-zero elements

Global Statistics
0 entities 0 sets 0 set members

Maximizing LP FolioLP
Original problem has:

3 rows 10 cols 19 elements
Presolved problem has:

3 rows 10 cols 19 elements

Its Obj Value S Ninf Nneg Sum Inf Time
0 42.600000 D 2 0 .000000 0
5 14.066667 D 0 0 .000000 0

Uncrunching matrix
5 14.066667 D 0 0 .000000 0

Optimal solution found

Windows users can retrieve the Optimizer log by redirecting it to a file. Add the following line to
your program immediately after the problem creation:

XPRSsetlogfile(prob, "logfile.txt");

The Optimizer log displays the size of the matrix, 3 rows (i.e. constraints) and 10 columns (i.e.
decision variables), and the log of the LP solution algorithm (here: ‘D’ for dual Simplex). The
output produced by our program tells us that the maximum return of 14.0667 is obtained with a
portfolio consisting of shares 1, 3, 5, 6, and 9. 30% of the total amount are spent in shares 1 and
6 each, 20% in 3, 13.3333% in 9 and 6.6667% in 5. It is easily verified that all constraints are
indeed satisfied: we have 50% of North-American shares (1 and 3) and 33.33% of high-risk shares
(3 and 9).
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CHAPTER 16

Mixed Integer Programming

This chapter extends the LP problem from Chapter 2 to a Mixed Integer Programming (MIP)
problem. It describes how to

� transform a MIP model into matrix format,

� input MIP problems with different types of discrete variables into Xpress-Optimizer,

� solve MIP problems and output the solution.

Chapter 6 shows how to formulate and solve this example with Mosel and in Chapter 11 the same
is done with BCL.

16.1 Extended problem description

The investor is unwilling to have small share holdings. He looks at the following two possibilities
to formulate this constraint:

1. Limiting the number of different shares taken into the portfolio to 4.

2. If a share is bought, at least a minimum amount 10% of the budget is spent on the share.

We are going to deal with these two constraints in two separate models.

16.2 MIP model 1: limiting the number of different shares

To be able to count the number of different values we are investing in, we introduce a second set
of variables buys in the LP model developed in Chapter 2. These variables are indicator variables
or binary variables. A variable buys takes the value 1 if the share s is taken into the portfolio and
0 otherwise.

We introduce the following constraint to limit the total number of assets to a maximum of 4
different ones. It expresses the constraint that at most 4 of the variables buys may take the value
1 at the same time. ∑

s∈SHARES

buys ≤ 4

We now still need to link the new binary variables buys with the variables fracs, the quantity of
every share selected into the portfolio. The relation that we wish to express is ‘if a share is
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selected into the portfolio, then it is counted in the total number of values’ or ‘if fracs >0 then
buys = 1’. The following inequality formulates this implication:

∀s ∈ SHARES : fracs ≤ buys

If, for some s, fracs is non-zero, then buys must be greater than 0 and hence 1. Conversely, if buys

is at 0, then fracs is also 0, meaning that no fraction of share s is taken into the portfolio. Notice
that these constraints do not prevent the possibility that buys is at 1 and fracs at 0. However, this
does not matter in our case, since any solution in which this is the case is also valid with both
variables, buys and fracs, at 0.

16.2.1 Matrix representation

The mathematical model can be transformed into the following table. Compared to the LP matrix
of the previous chapter, we now have ten additional columns for the variables buys and ten
additional rows for the constraints linking the two types of variables. Notice that we have to
transform the linking constraints so that all terms involving decision variables are on the left
hand side of the operator sign.

Table 16.1: MIP matrix

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Op. RHS

Risk 0 1
3

1
7

1
11

1
23

1
26 ≤ 1/3

MinNA 1 1
0

1
4

1
8

1
12 ≥ 0.5

Allfrac 2 1
1

1
5

1
9

1
13

1
15

1
17

1
19

1
21

1
24

1
27

= 1

Maxnum 3 1
29

1
31

1
33

1
35

1
37

1
39

1
41

1
43

1
45

1
47 ≤ 4

Linking 4 1
2

-1
30 ≤ 0

5 1
6

-1
32 ≤ 0

6 1
10

-1
34 ≤ 0

7 1
14

-1
36 ≤ 0

8 1
16

-1
38 ≤ 0

9 1
18

-1
40 ≤ 0

10 1
20

-1
42 ≤ 0

11 1
22

-1
44 ≤ 0

12 1
25

-1
46 ≤ 0

13 1
28

-1
48 ≤ 0

↑ ↑
rowidx matval

colbeg 0 3 7 11 15 17 19 21 23 26 29 31 33 35 37 39 41 43 45 47 49

The superscripts for the matrix coefficients indicate again the order of the entries in the arrays
rowidx and matval, the first three entries of which are highlighted (printed in italics).

16.2.2 Implementation with Xpress-Optimizer

In addition to the structures related to the matrix coefficients that are in common with LP
problems, we now also need to specify the MIP-specific information, namely the types of the MIP
variables (here all marked ’B’ for binary variable) in the array miptype and the corresponding
column indices in the array mipcol.

Another common type of discrete variable is an integer variable, that is, a variable that can only
take on integer values between given lower and upper bounds. These variables are defined with
the type ’I’. In the following section (MIP model 2) we shall see yet another example of discrete
variables, namely semi-continuous variables.
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#include <stdio.h>
#include <stdlib.h>
#include "xprs.h"

int main(int argc, char **argv)
{
XPRSprob prob;
int s, status;
double objval, *sol;

/* Problem parameters */
int ncol = 20;
int nrow = 14;
int nmip = 10;

/* Row data */
char rowtype[]= { ’L’,’G’,’E’,’L’,’L’,’L’,’L’,’L’,’L’,’L’,’L’,’L’,’L’,’L’};
double rhs[] = {1.0/3,0.5, 1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

/* Column data */
double obj[]= { 5, 17, 26, 12, 8, 9, 7, 6, 31, 21,0,0,0,0,0,0,0,0,0,0};
double lb[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0,0,0};
double ub[] = {0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,1,1,1,1,1,1,1,1,1,1};

/* Matrix coefficient data */
int colbeg[] = {0,3,7,11,15,17,19,21,23,26,29,31,33,35,37,39,41,43,45,47,49};
int rowidx[] = {1,2,4,0,1,2,5,0,1,2,6,0,1,2,7,2,8,2,9,2,10,2,11,0,2,12,0,2,

13,3,4,3,5,3,6,3,7,3,8,3,9,3,10,3,11,3,12,3,13};
double matval[] = {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1};

/* MIP problem data */
char miptype[] = {’B’,’B’,’B’,’B’,’B’,’B’,’B’,’B’,’B’,’B’};
int mipcol[] = { 10, 11, 12, 13, 14, 15, 16, 17, 18, 19};

XPRSinit(NULL); /* Initialize Xpress-Optimizer */
XPRScreateprob(&prob); /* Create a new problem */

/* Load the problem matrix */
XPRSloadglobal(prob, "FolioMIP1", ncol, nrow, rowtype, rhs, NULL,

obj, colbeg, NULL, rowidx, matval, lb, ub,
nmip, 0, miptype, mipcol, NULL, NULL, NULL, NULL, NULL);

XPRSchgobjsense(prob, XPRS_OBJ_MAXIMIZE); /* Set sense to maximization */
XPRSmipoptimize(prob, ""); /* Solve the problem */

XPRSgetintattrib(prob, XPRS_MIPSTATUS, &status); /* Get MIP sol. status */

if((status == XPRS_MIP_OPTIMAL) || (status == XPRS_MIP_SOLUTION))
{
XPRSgetdblattrib(prob, XPRS_MIPOBJVAL, &objval); /* Get objective value */
printf("Total return: %g\n", objval);

sol = (double *)malloc(ncol*sizeof(double));
XPRSgetmipsol(prob, sol, NULL); /* Get primal solution */
for(s=0;s<ncol/2;s++)
printf("%d: %g%% (%g)\n", s, sol[s]*100, sol[ncol/2+s]);

}

XPRSdestroyprob(prob); /* Delete the problem */
XPRSfree(); /* Terminate Xpress */

return 0;
}

To load the problem into Xpress-Optimizer we now use the function XPRSloadglobal. The first
14 arguments of this function are the same as for XPRSloadlp. The use of the 19th argument
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will be discussed in the next section; the remaining four arguments are related to the definition
of SOS (Special Ordered Sets)—the value 0 for the 16th argument indicates that there are none in
our problem.

In this program, not only the function for loading the problem but also those for solving and
solution access have been adapted to the problem type: we now solve a MIP problem via a
Branch-and-Bound search (the second argument "" of the optimization function
XPRSmipoptimize stands for ’default MIP algorithm’). We then retrieve the MIP solution status
and if an integer feasible solution has been found we print out the objective value of the best
integer solution found and the corresponding solution values of the decision variables.

Running this program produces the following solution output. The maximum return is now lower
than in the original LP problem due to the additional constraint. As required, only four different
shares are selected to form the portfolio:

Total return: 13.1
0: 20% (1)
1: 0% (0)
2: 30% (1)
3: 0% (0)
4: 20% (1)
5: 30% (1)
6: 0% (0)
7: 0% (0)
8: 0% (0)
9: 0% (0)

16.3 MIP model 2: imposing a minimum investment in each share

To formulate the second MIP model, we start again with the LP model from Chapters 2 and 15.
The new constraint we wish to formulate is ‘if a share is bought, at least a minimum amount 10%
of the budget is spent on the share.’ Instead of simply constraining every variable fracs to take a
value between 0 and 0.3, it now must either lie in the interval between 0.1 and 0.3 or take the
value 0. This type of variable is known as semi-continuous variable. In the new model, we replace
the bounds on the variables fracs by the following constraint:

∀s ∈ SHARES : fracs = 0 or 0. 1 ≤ fracs ≤ 0. 3

16.3.1 Matrix representation

This problem has the same matrix as the LP problem in the previous chapter, and so we do not
repeat it here. The only changes are in the specification of the MIP-related column data.

16.3.2 Implementation with Xpress-Optimizer

The following program foliomip2.c loads the MIP model 2 into the Optimizer. We have the
same matrix data as for the LP problem in the previous chapter, but the variables are now
semi-continuous, defined by the type marker ’S’. By default, Xpress-Optimizer assumes a
continuous limit of 1, we therefore specify the value 0.1 in the array sclim. Please note in this
context that limits for semi-continuous and semi-continuous integer variables given in the array
sclim are overwritten by the value in the array lb if the latter is different from 0.

Other available composite variable types are semi-continuous integer variables that take either
the value 0 or an integer value between a given limit and their upper bound (marked by ’R’)
and partial integers that take integer values from their lower bound to a given limit value and
are continuous beyond this value (marked by ’P’).

#include <stdio.h>
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#include <stdlib.h>
#include "xprs.h"

int main(int argc, char **argv)
{
XPRSprob prob;
int s, status;
double objval, *sol;

/* Problem parameters */
int ncol = 10;
int nrow = 3;
int nmip = 10;

/* Row data */
char rowtype[] = { ’L’,’G’,’E’};
double rhs[] = {1.0/3,0.5, 1};

/* Column data */
double obj[] = { 5, 17, 26, 12, 8, 9, 7, 6, 31, 21};
double lb[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
double ub[] = {0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3};

/* Matrix coefficient data */
int colbeg[] = {0, 2, 5, 8, 11,12,13,14,15, 17, 19};
int rowidx[] = {1,2,0,1,2,0,1,2,0,1,2, 2, 2, 2, 2, 0,2, 0,2};
double matval[] = {1,1,1,1,1,1,1,1,1,1,1, 1, 1, 1, 1, 1,1, 1,1};

/* MIP problem data */
char miptype[] = {’S’,’S’,’S’,’S’,’S’,’S’,’S’,’S’,’S’,’S’};
int mipcol[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
double sclim[] = {0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1};

XPRSinit(NULL); /* Initialize Xpress-Optimizer */
XPRScreateprob(&prob); /* Create a new problem */

/* Load the problem matrix */
XPRSloadglobal(prob, "FolioSC", ncol, nrow, rowtype, rhs, NULL,

obj, colbeg, NULL, rowidx, matval, lb, ub,
nmip, 0, miptype, mipcol, sclim, NULL, NULL, NULL, NULL);

XPRSchgobjsense(prob, XPRS_OBJ_MAXIMIZE); /* Set sense to maximization */
XPRSmipoptimize(prob, ""); /* Solve the problem */

XPRSgetintattrib(prob, XPRS_MIPSTATUS, &status); /* Get MIP sol. status */

if((status == XPRS_MIP_OPTIMAL) || (status == XPRS_MIP_SOLUTION))
{
XPRSgetdblattrib(prob, XPRS_MIPOBJVAL, &objval); /* Get objective value */
printf("Total return: %g\n", objval);

sol = (double *)malloc(ncol*sizeof(double));
XPRSgetmipsol(prob, sol, NULL); /* Get primal solution */
for(s=0;s<ncol;s++) printf("%d: %g%%\n", s, sol[s]*100);
}

XPRSdestroyprob(prob); /* Delete the problem */
XPRSfree(); /* Terminate Xpress */

return 0;
}

When executing this program we obtain the following output:

Total return: 14.0333
0: 30%
1: 0%
2: 20%
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3: 0%
4: 10%
5: 26.6667%
6: 0%
7: 0%
8: 13.3333%
9: 0%

Now five securities are chosen for the portfolio, each forming at least 10% and at most 30% of
the total investment. Due to the additional constraint, the optimal MIP solution value is again
lower than the initial LP solution value.
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CHAPTER 17

Quadratic Programming

In this chapter we turn the LP problem from Chapter 15 into a Quadratic Programming (QP)
problem, showing how to

� transform a QP model into matrix format,

� input and solve QP problems with Xpress-Optimizer.

Chapter 7 shows how to formulate and solve this example with Mosel and in Chapter 12 the same
is done with BCL.

17.1 Problem description

The investor may also look at his portfolio selection problem from a different angle: instead of
maximizing the estimated return and limiting the portion of high-risk investments he now wishes
to minimize the risk whilst obtaining a certain target yield. He adopts the Markowitz idea of
getting estimates of the variance/covariance matrix of estimated returns on the securities. Which
investment strategy should the investor adopt to minimize the variance subject to getting a
minimum target yield of 9?

17.2 QP model

To adapt the model developed in Chapter 2 to the new way of looking at the problem, we need
to make the following changes:

� New objective function: mean variance instead of total return.

� The risk-related constraint disappears.

� Addition of a new constraint: target yield.

The new objective function is the mean variance of the portfolio, namely:∑
s,t∈SHARES

VARst · fracs · fract

where VARst is the variance/covariance matrix of all shares. This is a quadratic objective function
(an objective function becomes quadratic either when a variable is squared, e.g., frac2

1, or when
two variables are multiplied together, e.g., frac1 · frac2).
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The target yield constraint can be written as follows:∑
s∈SHARES

RETs · fracs ≥ 9

The limit on the North-American shares as well as the requirement to spend all the money, and
the upper bounds on the fraction invested into every share are retained. We therefore obtain the
following complete mathematical model formulation:

minimize
∑

s,t∈SHARES

VARst · fracs · fract∑
s∈NA

fracs ≥ 0. 5∑
s∈SHARES

fracs = 1

∑
s∈SHARES

RETs · fracs ≥ 9

∀s ∈ SHARES : 0 ≤ fracs ≤ 0. 3

17.3 Matrix representation

For the problem input into Xpress-Optimizer, the mathematical model is transformed into the
following constraint matrix (Table 17.1).

Table 17.1: QP matrix

frac1 frac2 frac3 frac4 frac5 frac6 frac7 frac8 frac9 frac10

0 1 2 3 4 5 6 7 8 9 Oper. RHS

MinNA 0 1
0

1
3

1
6

1
9 ≥ 0.5

Allfrac 1 1
1

1
4

1
7

1
10

1
12

1
14

1
16

1
18

1
20

1
22

= 1

Yield 2 5
2

17
5

26
8

12
11

8
13

9
15

7
17

6
19

31
21

21
23 ≥ 9

↑ ↑
rowidx matval

colbeg 0 3 6 9 12 14 16 18 20 22 24

As in the previous chapters, the superscripts for the matrix coefficients indicate the order of the
entries in the arrays rowidx and matval, the first three entries of which are highlighted (printed
in italics).

The coefficients of the quadratic objective function are given by the following
variance/covariance matrix (Table 17.2).

17.4 Implementation with Xpress-Optimizer

The following program folioqp.c loads the QP problem into Xpress-Optimizer and solves it.
Notice that the quadratic part of the objective function must be specified in triangular form, that
is, either the lower or the upper triangle of the original matrix. Here we have chosen the upper
triangle, which means that instead of 4 · frac2 · frac4 + 4 · frac4 · frac2 we only specify the sum of
these terms, 8 · frac2 · frac4. Due to the input conventions of the Optimizer the values of the main
diagonal also need to be multiplied with 2. As with the matrix coefficients, only quadratic terms
with non-zero coefficients are specified to the Optimizer (hence the spaces in the array
definitions below).
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Table 17.2: Variance/covariance matrix

frac1 frac2 frac3 frac4 frac5 frac6 frac7 frac8 frac9 frac10

0 1 2 3 4 5 6 7 8 9

frac1 0 0.1

frac2 1 19 -2 4 1 1 1 0.5 10 5

frac3 2 -2 28 1 2 1 1 -2 -1

frac4 3 4 1 22 1 2 3 4

frac5 4 1 2 4 -1.5 -2 -1 1 1

frac6 5 1 1 1 -1.5 3.5 2 0.5 1 1.5

frac7 6 1 1 2 -2 2 5 0.5 1 2.5

frac8 7 0.5 -1 0.5 0.5 1 0.5 0.5

frac9 8 10 -2 3 1 1 1 0.5 25 8

frac10 9 5 -1 4 1 1.5 2.5 0.5 8 16

#include <stdio.h>
#include <stdlib.h>
#include "xprs.h"

int main(int argc, char **argv)
{
XPRSprob prob;
int s, status;
double objval, *sol;

/* Problem parameters */
int ncol = 10;
int nrow = 3;
int nqt = 43;

/* Row data */
char rowtype[] = {’G’,’E’,’G’};
double rhs[] = {0.5, 1, 9};

/* Column data */
double obj[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
double lb[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
double ub[] = {0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3};

/* Matrix coefficient data */
int colbeg[] = {0, 3, 6, 9, 12, 14, 16, 18, 20, 22, 24};
int rowidx[] = {0,1,2,0,1, 2,0,1, 2,0,1, 2,1,2,1,2,1,2,1,2,1, 2,1,2};
double matval[] = {1,1,5,1,1,17,1,1,26,1,1,12,1,8,1,9,1,7,1,6,1,31,1,21};

/* QP problem data */
int qcol1[] = {0,

1,1,1,1,1,1,1,1,1,
2,2,2,2,2, 2,2,
3, 3,3, 3,3,
4,4,4,4,4,4,
5,5,5,5,5,
6,6,6,6,
7,7,7,
8,8,

9};
int qcol2[] = {0,

1,2,3,4,5,6,7,8,9,
2,3,4,5,6, 8,9,
3, 5,6, 8,9,
4,5,6,7,8,9,
5,6,7,8,9,
6,7,8,9,
7,8,9,
8,9,

9};
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double qval[] = {0.1,
19,-2, 4,1, 1, 1,0.5, 10, 5,

28, 1,2, 1, 1, -2, -1,
22, 1, 2, 3, 4,

4,-1.5,-2, -1, 1, 1,
3.5, 2,0.5, 1,1.5,

5,0.5, 1,2.5,
1,0.5,0.5,

25, 8,
16};

for(s=0;s<nqt;s++) qval[s]*=2;

XPRSinit(NULL); /* Initialize Xpress-Optimizer */
XPRScreateprob(&prob); /* Create a new problem */

/* Load the problem matrix */
XPRSloadqp(prob, "FolioQP", ncol, nrow, rowtype, rhs, NULL,

obj, colbeg, NULL, rowidx, matval, lb, ub,
nqt, qcol1, qcol2, qval);

XPRSchgobjsense(prob, XPRS_OBJ_MINIMIZE); /* Set sense to maximization */
XPRSlpoptimize(prob, ""); /* Solve the problem */

XPRSgetintattrib(prob, XPRS_LPSTATUS, &status); /* Get solution status */

if(status == XPRS_LP_OPTIMAL)
{
XPRSgetdblattrib(prob, XPRS_LPOBJVAL, &objval); /* Get objective value */
printf("Minimum variance: %g\n", objval);

sol = (double *)malloc(ncol*sizeof(double));
XPRSgetlpsol(prob, sol, NULL, NULL, NULL); /* Get primal solution */
for(s=0;s<ncol;s++) printf("%d: %g%%\n", s, sol[s]*100);
}

XPRSdestroyprob(prob); /* Delete the problem */
XPRSfree(); /* Terminate Xpress */

return 0;
}

A QP problem is loaded into the Optimizer with the function XPRSloadqp. This function takes
the same arguments as function XPRSloadlp with four additional arguments at the end for the
quadratic part of the objective function: the number of quadratic terms, nqt, the column
numbers of the variables in every quadratic term (qcol1 and qcol2) and their coefficient, qval.

If we wish to load a Mixed Integer Quadratic Programming (MIQP) problem, then we need to use
the function XPRSloadqglobal that takes the same arguments as XPRSloadqp plus the nine
arguments for MIP problems introduced with function XPRSloadglobal in the previous chapter.

As opposed to the previous examples we now minimize the objective function. Notice that for
solving and solution access we use the same functions as for LP problems. When solving MIQP
problems, correspondingly we need to use the MIP solving and solution functions presented in
Chapter 16.

Executing this program produces the following output:

Minimum variance: 0.557394
0: 30%
1: 7.15401%
2: 7.38237%
3: 5.46362%
4: 12.6561%
5: 5.91283%
6: 0.333491%
7: 29.9979%
8: 1.0997%
9: 6.97039e-06%
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All but the last share are selected into the portfolio (the value printed for 9 is so close to 0 that
Xpress-Optimizer interprets it as 0 with its default tolerance settings).
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APPENDIX A

Going further

A.1 Installation, licensing, and trouble shooting

Detailed information on how to install Xpress is provided with every distribution. The ‘Licensing
User Guide’ can also be downloaded from the client area of the Xpress website. To obtain a
license key please contact your nearest Xpress sales office.

Should you encounter any problems with installing the software or setting up the license, please
contact Xpress Support:

support@fico.com

(Please include ’Xpress’, in the subject line.)

You may also consult the FAQs and discussion groups on the FICO website:

http://decisions.fico.com

(select Business rules & optimization)

A.2 User guides, reference manuals, and other publications

Under the following address you may find a collection of white papers on various topics:

http://optimization.fico.com/product-information/

Some whitepapers and all of the documents refered to in the following sections are included in
the Xpress distribution, for an overview direct your webbrowser to the subdirectory docs of your
Xpress installation directory.

A useful online resource is the searchable database of Xpress examples that you can reach
following this link:

http://examples.xpress.fico.com/example.pl

A.2.1 Modeling

The book ‘Applications of Optimization with Xpress-MP’ (Dash Optimization, 2002) shows how to
formulate and solve a large number of application problems with Xpress:

http://optimization.fico.com/product-information/

A.2.2 Mosel

For a more in-depth introduction to working with Mosel, we suggest to read the ‘Mosel User
Guide’.
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The ‘Mosel Language Reference Manual’ provides a complete documentation of the Mosel
language, also including the features defined by the modules of the Mosel distribution (mmxprs,
mmodbc, mmive, etc.).

The Mosel Compiler and Mosel Run-time libraries are documented in the ‘Mosel Libraries
Reference Manual’.

To learn how to implement your own Mosel modules, please refer to the ‘Mosel NI User Guide’.

The Mosel Native Interface is documented in the ‘Mosel NI Reference Manual’.

A.2.3 BCL

The ‘BCL Reference Manual’ contains further examples of the use of BCL and a complete
documentation of all C library functions and C++ classes.

For Java, a separate ‘Java on-line documentation’ is available.

A.2.4 Optimizer

All functions of the Optimizer library are documented in the ‘Optimizer Reference Manual’. In
this manual you also find exhaustive lists of all problem attributes and control parameters that
may be used with Xpress-Optimizer.

An introduction to fully automated tuning of the optimization algorithms for your problems is
provided in the ‘Xpress-Tuner User Guide’

A.2.5 Other solvers and solution methods

The FICOTM Xpress suite comprises some other products that have not been mentioned in this
manual since they are typically reserved for more advanced uses. Each of these components
comes with its own documentation. However, reading the introduction to Mosel in the first part
of this manual is recommended to all first-time users who wish to employ these other products as
Mosel modules.

Successive Linear Programming (SLP) is a method for solving Non-linear Programming problems
to (local) optimality. The Xpress-SLP solver is provided in the form of a Mosel module, mmxnlp, or
as a library. For further detail see the ‘Xpress-SLP Reference Manual’.

Constraint Programming (CP) is an approach to problem solving that has been particularly
successful for dealing with nonlinear constraint relations over discrete variables, such as
frequently occur in scheduling and planning applications. The Xpress-Kalis software, an interface
to the Artelys Kalis constraint solver is provided in the form of a Mosel module, kalis, which
defines aggregate modeling objects specialized for scheduling and planning problems. For a
descprition of this software see the ‘Xpress-Kalis Reference Manual’ and ‘Xpress-Kalis User Guide’.
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APPENDIX B

Glossary

Basis: when solving an LP problem with the Simplex algorithm, the basis provides the complete
information about which variables and constraints are active in a given solution. It can therefore
be used to save and quickly restore the status of the solution algorithm at a given point.

Binary model file (BIM file): a compiled version of the .mos model file that is portable across all
platforms for which Mosel is available. It does not include any data read from external files.
These must still be provided in separate files, thus making it possible to run the same BIM file
with different data sets.

Bound: equality or inequality constraint on a single decision variable. When working with
Xpress-Optimizer through Mosel or BCL, bounds may be changed without having to reload the
problem.

Branch-and-Bound: solution method for MIP problems consisting of an enumeration of the
feasible values of the discrete variables (branching) coupled with LP techniques (providing
bounding information). Typically represented in the form of a Branch-and-Bound tree where
every node stands for the solution of an LP problem, and the connections between these nodes
are the bound changes or added constraints. Such enumerative methods may lead to a
computational explosion, even for relatively small problem instances, so that it is not always
realistic to solve MIP problems to optimality.

Branch-and-Cut: solution algorithm for MIP problems similar to Branch-and-Bound. At some or all
nodes of the search tree violated cuts are added to the problem to tighten the LP relaxation.

Builder Component Library (BCL): model builder library for developing a model directly in a
programming language. BCL allows users to formulate their models with objects (decision
variables, constraints, index sets) similar to those of a dedicated modeling language.

Constraint: relation between decision variables. Constraint types include equality constraints
(operator = in Mosel and == in BCL C++), inequality constraints (operators >= and <= in Mosel and
BCL C++), and integrality conditions. Bounds are special cases of inequality or equality constraints.

Cut: also called valid inequality; additional constraint in MIP problems that is not required to
characterize the set of integer solutions, but must be satisfied by all feasible solutions. Cuts
tighten the LP relaxation by drawing the LP solution space closer to the convex hull of the MIP
solution space.

Decision variable (or variable for short): unknown that needs to be assigned a value by the
solution algorithm. The basic variable type is a continuous variable (a variable taking values from
a continuous domain between a given lower and upper bound). Discrete variable types include
binary variables (also called indicator variables; variables that may only take the values 0 or 1);
integer variables (taking values in an integer range between given lower and upper bounds);
semi-continuous variables (either 0 or values from a continuous interval between a given limit
and upper bound); semi-continuous integer variables (either 0 or integer values between a given
limit and upper bound); partial integer variables (integer-valued from the lower bound to a given
limit and continuous beyond this limit value)
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Declaration: the declaration of an object states its form and type and usually precedes the
definition of its contents. With Mosel, the declaration of basic types and linear constraints is
optional, but decision variables must always be declared; subroutines must be declared if they are
used in a model prior to their definition.

Dynamic set, dynamic array: in Mosel, all sets and arrays are created as dynamic objects if their
size is not known at their creation. They increase dynamically with the contents assigned to them;
sets may also decrease. Dynamic sets may be finalized to make them static. This will make the
handling of any arrays indexed by these sets and declared after their finalization more efficient,
and more importantly, this allows Mosel to check for ‘out of range’ errors that cannot be
detected if the sets are dynamic. Sparse data tables should preferrably be stored in dynamic
arrays whereas constant arrays are more efficient for dense tables.

Heuristic: algorithm for finding feasible solution(s) to a problem. Some heuristics guarantee a
bound on the solution quality but usually no proof of optimality is possible.

Index set: set used for indexing an array. Using string indices may help to make the output
produced by Mosel or BCL more easily understandable.

Interactive Visual Environment (IVE): development environment for Mosel that provides,
amongst many other tools, graphical displays of solution information.

Linear Programming (LP) problem: a Mathematical Programming problem where all constraints
and the objective function are linear expressions of the decision variables, and the variables have
continuous domains—i.e., they can take on any, usually non-negative, real values. A
well-understood case for which efficient algorithms (Simplex, interior point) are known.

Loop: Loops group actions that need to be repeated a certain number of times, either for all
values of some index or counter (forall in Mosel) or depending on whether a condition is fulfilled
or not (while, repeat until in Mosel).

LP relaxation: in a MIP problem, the LP relaxation is obtained by dropping the integrality
conditions on the decision variables.

Mathematical Programming problem (or problem for short): a set of decision variables,
constraints over these variables and an objective function to be maximized or minimized.

Matrix: the matrix representation of Mathematical Programming problems with linear
constraints is a table where the columns are the variables and the rows represent the constraints.
The table entries are the coefficients of the variables in the constraints, usually stored in sparse
format, that is, only the non-zero entries are given.

Mixed Integer Programming (MIP) problem: a Mathematical Programming problem where
constraints and objective function are linear just as in LP and variables may have either discrete or
continuous domains. To solve this type of problems, LP techniques are coupled with an
enumeration (known as Branch-and-Bound).

Modeling language: a high-level language (such as the Mosel language) that allows the user to
state Mathematical Programming problems in a form close to their algebraic representation.
Carries out automatically the transformation to the representation required by the solver(s).

Model: algebraic representation of a problem; also employed to denote the implementation with
a modeling tool such as Mosel or BCL.

Module: also called dynamic shared object (DSO); dynamic library written in the C programming
language that observes the conventions set out by the Mosel Native Interface. Modules enable
users to extend the Mosel language with new features (e.g. to implement problem-specific data
handling, or connections to external solvers or solution algorithms). Modules of the Xpress
distribution include access to Xpress-Optimizer (LP, MIP, QP) and Xpress-SLP, data handling
facilities (e.g. via ODBC) and access to system functions.

Mosel: modeling and solving environment comprising the Mosel language (a modeling and
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programming language), the Mosel libraries (for embedding Mosel models into applications), and
the Mosel Native Interface (opening up the Mosel language to external additions in the form of
modules).

Mosel Native Interface (NI): a subroutine library giving access to Mosel models during their
execution; defines also the conventions to be observed by Mosel modules. The NI enables users to
extend the Mosel language with new features.

Newton-Barrier algorithm: also interior point algorithm; solution algorithm for LP and QP
problems that proceeds from some initial interior point in the set of feasible solutions towards an
optimal solution without touching the border of the feasible set.

Non-linear Programming (NLP) problem: a Mathematical Programming problem with non-linear
constraints or objective function. Frequently heuristic or approximation methods are employed to
find good (locally optimal) solutions. A method provided by Xpress for solving problems of this
type is Successive Linear Programming (SLP).

Objective function: an expression of decision variables to be minimized or maximized (in this
manual only linear or quadratic expressions are considered).

Optimization: finding a feasible solution to a problem that minimizes or maximizes a given
objective function.

Optimizer: the Xpress solver for LP, MIP, and QP. Available in the form of a library or a standalone
program.

Overloading: subroutines that are defined in several versions for different types or numbers of
arguments; operators that are defined for different operand types or combinations of operand
types.

Parameter: depending on the context this term has several slightly different meanings: the
settings of model parameters (in Mosel) may be changed at run-time, for instance to define
different input data sets; problem parameters (in the Optimizer usually called problem attributes)
provide access to information about a problem (e.g. solution status) and are typically read-only;
algorithm control parameters are used to control algorithmic settings (choice of the solution
algorithm, tolerances, etc.).

Problem instance: a Mathematical Programming problem complete with a specific data set.

Quadratic Programming (QP) problem: differs from LP problems in that there are quadratic terms
in the objective function (the constraints remain linear). The decision variables may be continuous
or discrete, in the latter case we speak of Mixed Integer Quadratic Programming (MIQP).

Range set: (in Mosel) a set of consecutive integers.

Right hand side (RHS): constant term of a (linear) constraint; a standard format (used, for
example, in the matrix representation) is to write all terms involving decision variables on the left
of the operator sign and the constant term on its right side.

Selection statement: statement to express a selection between different actions to be taken in a
program. In Mosel these are if/then/elif/then/else/end-if and case.

Simplex algorithm: solution algorithm for LP problems. The idea of the Simplex algorithm is
moving from vertex to vertex of the polytope (‘simplex’) that represents the set of feasible
solutions for an LP problem, to improve the objective function value.

Solution: this term may be used with two different meanings: it may denote an assignment of
values to all decision variables that satisfies all constraints (feasible solution). In optimization
problems where the best possible solution is sought—i.e., a solution minimizing or maximizing a
given objective function, the term solution usually is equivalent to optimal solution.

Solver: software used to solve (usually optimize) a problem. With Xpress we use
Xpress-Optimizer.
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Status information: Mosel, BCL, and the Optimizer define different parameters providing status
information, such as the LP or MIP status that tell the user among others whether the problem
has been solved correctly and a solution is available.

Subroutine: substructures allowing programs to be broken down into smaller subtasks that are
easier to understand and to work with. In Mosel, subroutines may be employed in the form of
procedures or functions. Procedures are called as a program statement, they have no return
value, functions must be called in an expression that uses their return value.

Successive Linear Programming (SLP): method for solving NLP problems via a sequence of LP
problems.
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C
case, 116
code completion, 17
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comparison tolerance, 53
compilation, 69, 94, 98
constraint, 114
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equality, 9, 69, 114
inequality, 10, 114
linear, 14, 68
name, 28

Constraint Programming, 113
continuous variable, 114
control parameter, 116
CP, see Constraint Programming
cut, 36, 77, 114
cut generation, 37, 52, 77, 89
cutoff value, 49, 86

D
data

input from file, 22, 30, 43, 72, 81
data file, 22, 30, 43, 70, 81
data handling, 5

debugger, 18
debugging, 17
decision variable, 9, 114

creation, 68
declaration, 14, 23
type, 34, 75, 101

declaration, 115
declarations, 14, 52
deployment template, 54
discrete variable, 34, 75, 114
DSO, see dynamic shared object
dynamic array, 23, 115
dynamic set, 23, 115
dynamic shared object, 115

E
elif/then, 28
embedding, 5, 54
empty line, 15
end-do, 28
end-function, 51
end-model, 14
end-procedure, 51, 52
equality constraint, 9, 69, 114
error

redirection, 57
error handling, 15, 73, 93
error stream, 57
exportprob, 58
expression

linear, 14, 68
quadratic, 81

F
F_APPEND, 23
F_OUTPUT, 23
fclose, 23
feasibility tolerance, 53, 89
feasible solution, 116
finalize, 23, 115
fopen, 23
forall, 14, 28, 115
forall/do, 28
formating, 15

output, 23
forward, 50
function, 51, 117

G
getLPStat, 73
getMIPStat, 76
getparam, 52
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getprobstat, 28
getXPRSprob, 89
graph drawing, 28
graphical user interface, 5, 115

H
heuristic, 115

variable fixing, 49, 86

I
if/then/else/end-if, 28, 116
if/then/end-if, 28
indentation, 15
index

string, 20, 70, 115
index set, 72, 115
indicator variable, 33, 74, 100, 114
inequality constraint, 10, 114
info bar, 13
initialization

BCL, 68
explicit, 73
Mosel, 56
Optimizer, 93

initializations from, 23
initializations to, 23
input file, 22, 72
Insight, see Optimization Modeler
integer variable, 34, 75, 101, 114
integrality condition, 36, 114
interior point algorithm, 116
interrupt execution, 38
is_binary, 34
is_integer, 34
is_partint, 39
is_semcont, 38
is_semint, 39
IVE, 5, 115

starting, 12

L
language

modeling, 5
solving, 5

library
embedding, 5

limit value, 77, 103, 114
line break, 15
linear constraint, 14, 68
linear expression, 14, 68
Linear Programming, 4, 12, 67, 96, 115

optimization information, 19, 70, 95, 99
problem status, 73, 97
relaxation, 36, 115

loadMat, 89
loadprob, 53
loop, 14, 28, 115

optimization, 27
LP, see Linear Programming
LP format, 57, 73, 93

lpOptimize, 69, 81

M
mathematical model, 10
Mathematical Programming, 4
Mathematical Programming problem, 4, 115
matrix, 115

display, 17, 35
export, 57, 73
format, 57, 73, 93
import, 58, 93

matrix representation, 96, 101, 107, 116
maximize, 69
maximize, 15, 17, 37, 53
minimize, 43
MIP, see Mixed Integer Programming
MIP heuristics, 37, 52, 77, 89
mipOptimize, 73, 76, 89
MIQP, see Mixed Integer Quadratic Programming
Mixed Integer Programming, 4, 33, 74, 100, 115

optimization information, 36, 77, 89
problem status, 76, 103
search, 36, 77, 103

Mixed Integer Quadratic Programming, 4, 41, 80,
109, 116

optimization information, 46, 85
mminsight, 59
model, 115

BCL, 68
embedding, 5, 54
incremental definition, 45, 84
Mosel, 13
parameter, 24, 116

model, 14
model building, 4, 8
modeling language, 5, 115
modeling objects, 6, 114
modeling style, 24
module, 5, 115
module browser, 17, 52
Mosel, 115

environment, 5
language, 5, 115
libraries, 5, 116
model, 13
Native Interface, 5, 116
standalone, 25

mosel, 25
MPS format, 57, 73, 93
mpvar, 14

N
names

constraint, 28
defining, 69

namespace, 68
Newton-Barrier, 82, 116
newVar, 68
NI, see Mosel Native Interface
NLP, see Non-linear Programming
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node, 36, 114
colors, 38

Non-linear Programming, 4, 113, 116

O
objective function, 10, 116

definition, 14, 68
quadratic, 42, 81, 106

ODBC, 5, 115
optimal solution, 116
optimization, 15, 69, 97, 116

loop, 27, 44
Optimization Modeler, 59
optimization project, 5
Optimizer, 6, 15, 69, 116

direct access, 89
output, 15, 18, 69, 97

formating, 23
redirection, 57, 99

output file, 24, 57, 94
overloading, 52, 116

P
parameter, 116
parameter settings, 24, 37, 52, 56, 89, 116
parameters, 24, 116
partial integer variable, 39, 78, 103, 114
pausing execution, 35, 38
presolving, 37, 52, 89
print, 72
printing, 15, 69
problem

change, 53, 89
creation, 68
input, 97
instance, 56, 116
matrix, 96, 115
parameter, 116

problem status, 28, 116, 117
LP, 73, 97
MIP, 76, 103
QP, 109

procedure, 51, 117
programming language, 5
project bar, 13

Q
QP, see Quadratic Programming
quadratic expression, 81
quadratic objective function, 42, 81, 106
Quadratic Programming, 4, 41, 80, 106, 116

algorithm, 82
optimization information, 82
problem status, 109

R
range set, 14, 116
repeat until, 115
return value, 52
right hand side, 24, 96, 116
row, 96, 115

run bar, 13

S
scenario loading, 62
scenario run, 62
selection statement, 116
semi-continuous integer, 39, 78, 103, 114
semi-continuous variable, 38, 77, 103, 114
set

definition, 14
dynamic, 23, 115
range, 14, 116

setLB, 89
setlb, 53
setLim, 77
setMsgLevel, 70
setObj, 69
setparam, 37, 52
setSense, 69, 73
setUB, 89
setub, 53
Simplex, 19, 82, 89, 116
SLP, see Successive Linear Programming
solution, 116

feasible, 116
optimal, 116

solution heuristic, 49, 86
solution information, 19, 117
solver, 116
solving, 15, 69, 97, 116
space, 15
sparse format, 115
strfmt, 23
string indices, 20, 70, 115
subroutine, 51, 117
subroutine definition

overloading, 52
Successive Linear Programming, 4, 113, 117
system functions, 5, 115

T
tolerance value, 53, 89

U
user graph, 28, 44
user module, 5, 115
uses, 15, 30

V
valid inequality, see cut
variable, see decision variable
view

editable, 64
viewing matrix, 35

W
warning, 16
while, 115
write, 15
writeln, 15
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XPRB_PI, 78
XPRB_SC, 77
XPRB_SI, 78
XPRB_UI, 75
XPRBctr, 72
XPRBexpr, 81
XPRBindexSet, 72
XPRBprob, 72
XPRBreadarrlinecb, 81
XPRBreadlinecb, 72
XPRBsos, 72
XPRBvar, 72
Xpress-BCL, see BCL
Xpress-IVE, see IVE
Xpress-Kalis, 113
Xpress-Mosel, see Mosel
Xpress-Optimizer, see Optimizer
Xpress-SLP, 113
XPRM_F_ERROR, 57
XPRM_F_OUTPUT, 57
XPRS_CONT, 53
XPRS_CUTSTRATEGY, 37, 52, 89
XPRS_HEURSTRATEGY, 37, 52, 89
XPRS_LPLOG, 89
XPRS_LPSTOP, 53
XPRS_MIPLOG, 89
XPRS_OPT, 28
XPRS_PRESOLVE, 37, 52, 89
XPRSchgobjsense, 109
XPRSloadglobal, 102
XPRSloadlp, 98
XPRSloadqglobal, 109
XPRSloadqp, 109
XPRSlpoptimize, 98
XPRSmipoptimize, 103
XPRSprob, 89
XPRSsetintcontrol, 89
XPRSsetlogfile, 99

Z
ZEROTOL, 53
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