
Whitepaper

FICOTM Xpress
Optimization Suite Robust Optimization with Xpress

Usage guidelines and examples

FICOTM Xpress Optimization Suite whitepaper

Last update 23 April, 2014

www.fico.com Make every decision countTM

Robust Optimization with Xpress

Robust Optimization with FICOTM Xpress
Usage guidelines and examples

P. Belotti, Z. Csizmadia, S. Heipcke, S. Lannez

Xpress Optimization, FICO, FICO House, Starley Way, Birmingham B37 7GN, UK
http://www.fico.com/xpress

Release 7.7
23 April, 2014

Abstract
This whitepaper gives an introduction to formulating and solving Robust Optimization problems with FICOTM

Xpress.
The introductory part explains the general concepts of Robust Optimization and which types of formulations
are available with Xpress. The remainder of this document is formed by a collection of example problems
showing typical uses of Robust Optimization in practice with a discussion of the problem implementation with
Xpress-Mosel.
The examples presented in this whitepaper are included in the examples/robust/Mosel directory of the
Xpress installation.

Contents

1 Introduction . 2
1.1 Uncertains and robust constraints . 3
1.2 Types of robust constraints . 3

1.2.1 Simple bounds on the uncertain coefficients 4
1.2.2 Linear constraints on the uncertainty sets 6
1.2.3 Ellipsoidal uncertainty sets . 7
1.2.4 Equality constraints and uncertain values with no uncertain constraints 8
1.2.5 Mixing uncertainty sets and types . 9
1.2.6 Cardinality restrictions for uncertains 10
1.2.7 Using historical data - scenarios . 10
1.2.8 Uncertainty in the objective . 12

1.3 Nominal values: centered and uncentered uncertainty 12
1.3.1 The price of robustness . 13
1.3.2 Working with nominal values . 14
1.3.3 Using nominal values to shift the uncertainty set 15
1.3.4 Using nominal valued uncertains as coefficients 16

1.4 Examples of robust models . 17
2 Robust shortest path . 18

2.1 Problem description . 18
2.2 Mathematical formulation . 18

2.2.1 Shortest path problem . 18
2.2.2 Robust optimization problem . 19

2.3 Implementation . 20
2.4 Results . 21

Contents c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 1

Robust Optimization with Xpress

3 Production planning under demand uncertainty . 24
3.1 Problem description . 24
3.2 Mathematical formulation . 24

3.2.1 Multi-period, multi-item production planning problem 24
3.2.2 Robust optimization problem . 25

3.3 Implementation . 26
3.4 Results . 28

4 Robust network design . 30
4.1 Problem description . 30
4.2 Mathematical formulation . 30
4.3 Implementation . 31
4.4 Input Data . 33
4.5 Results . 33

5 Robust portfolio optimization . 35
5.1 Problem description . 35
5.2 Mathematical formulation . 35

5.2.1 Highest protection . 36
5.2.2 Budgeted protection . 36

5.3 Implementation . 36
5.4 Results . 39

5.4.1 Input Data . 39
5.4.2 Analysis . 40

5.5 References . 41
6 Robust unit commitment . 42

6.1 Problem description . 42
6.1.1 Robust against power demand variation 42
6.1.2 Robust against the N-k contingency . 43

6.2 Mathematical formulation . 43
6.2.1 Original Unit Commitment Problem . 44
6.2.2 Load Robust Unit Commitment Problem 44
6.2.3 The N-k Contingency-Constrained Unit Commitment Problem 44

6.3 Implementation . 45
6.3.1 The Original Unit Commitment Implementation 45
6.3.2 The Load Robust Unit Commitment Implementation 47
6.3.3 The N-k Contingency-Constrained Unit Commitment Implementation 47

6.4 Results . 48
6.5 References . 49

7 Production planning under energy supply uncertainty 50
7.1 Problem description . 50
7.2 Mathematical formulation . 50
7.3 Implementation . 51
7.4 Input Data . 53
7.5 Results . 53
7.6 References . 54

Bibliography . 54

1 Introduction

Robust optimization is a modelling paradigm that offers solutions when uncertainty in the input
data can be bounded within a well described region.

Robust optimization is different from stochastic optimization. While stochastic optimization

Introduction c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 2

Robust Optimization with Xpress

usually aims to identify a solution whose expected value of the objective function is optimal with
respect to the probability distribution of the uncertain data, robust optimization focuses on
finding a solution that is feasible regardless of the realization of the uncertain values; hence the
term robust. When uncertainty is associated to the objective of a model, robust optimization
returns a solution that is optimal with respect to the worst case of all realizations of the uncertain
quantities.

1.1 Uncertains and robust constraints

A model quantity or coefficient in the model whose value is subject to uncertainty is called an
uncertain.

Intuitively, an uncertain can be viewed as a unknown quantity that is not under our control, but is
controlled by an opponent. The opponent makes his decision for the values of the uncertains
after we have made our decision, i.e., after the solver has found an optimal value for the model
variables. Hence, the values of the model variables must assume for the worst case.

A model constraint that includes some uncertainty in the form of an uncertain coefficient or right
hand side is called a robust constraint. A good way to visualize the concept of robust
optimization is to consider a robust constraint as a two-phase expression. For the sake of
argument, let us assume a less-than or equal-to constraint that contains some uncertain model
quantities:

a1x1+. . . +alxl + (ak + uk)xk+. . . +(an + un)xn ≤ b.

Here, all ai coefficients are known. However, the values of coefficients of variables xk to xn are
only known to some level of uncertainty, denoted by uk to un. As for traditional variables, we
must define the values these uncertains can take.

The feasible region of the uncertains is called the uncertainty set, and is modelled by means
of constraints on the uncertains. In the example above, we may know that the uncertain
quantities are likely to be small and their norm might be bounded from above, hence we want a
solution that is robust at a given confidence level. This implies a constraint on the uncertains of
the form

u2
k+. . . +u2

n ≤ r.

Having described the possible values of the uncertains, robust optimization aims to find a
solution that is always feasible, thus the robust constraint is equivalent to the constraint

a1x1+. . . +alxl + maxu2
k+...+u2

n≤r(ak + uk)xk+. . . +(an + un)xn ≤ b.

A robust model may contain several robust constraints and several uncertainty sets. The solvability
of a robust optimization problem depends on whether the robust constraints in the model can be
transformed into a form that can be solved by the available mathematical programming solvers.
The resulting transformed model that is solved is called the robust counterpart.

1.2 Types of robust constraints

A robust constraint can only contain uncertains either multiplied by a variable or at the
right-hand side. The type of a robust constraint is defined by how the uncertainty set of affecting
it is described. We shall work with a small knapsack problem example and explore alternative
formulations of the uncertainty set.

Introduction c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 3

Robust Optimization with Xpress

model Knapsack
uses "mmrobust" ! Load the robust library

parameters
NUM=5 ! Number of items
MAXVAL=100 ! Maximum value
MAXWEIGHT=80 ! Maximum weight
WTMAX=102 ! Max weight allowed for haul
end-parameters

declarations
Items=1..NUM ! Index range for items
VALUE: array(Items) of real ! Value of items
WEIGHT: array(Items) of real ! Weight of items
x: array(Items) of mpvar ! Decision variables
end-declarations

setrandseed(5);
forall(i in Items) do
VALUE(i):=50+random*MAXVAL
WEIGHT(i):=1+random*MAXWEIGHT
end-do
forall(i in Items) x(i) is_binary ! All x are 0/1

MaxVal:= sum(i in Items) VALUE(i)*x(i) ! Objective: maximize total value
WtMax:= sum(i in Items) WEIGHT(i)*x(i) <= WTMAX ! Weight restriction

maximize(MaxVal)

This basic model without uncertainty solves to 256.601.

Objective: 256.601
Item Weight Value
1: 0 74.37 118.04
2: 1 62.34 141.75
3: 1 27.74 114.85
4: 0 53.17 100.60
5: 0 74.02 65.82

1.2.1 Simple bounds on the uncertain coefficients

It is possible to impose simple box constraints on the uncertain values. This is often an immediate
approach as it simply defines the range of values a coefficient can take, on a per-coefficient basis.
Introducing uncertains to the model is as follows.

parameters
NUM=5 ! Number of items
MAXVAL=100 ! Maximum value
MAXWEIGHT=80 ! Maximum weight
WTMAX=102 ! Max weight allowed for haul
WTPERCENT=0.3 ! Uncertainty as a percentage
end-parameters

declarations
Items=1..NUM ! Index range for items
VALUE: array(Items) of real ! Value of items
WEIGHT: array(Items) of real ! Weight of items
x: array(Items) of mpvar
WeightUncertanty: array(Items) of uncertain ! Uncertains representing

! deviation from weight
end-declarations

forall(i in Items) x(i) is_binary ! All x are 0/1

Introduction c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 4

Robust Optimization with Xpress

setrandseed(5);
forall(i in Items) do
VALUE(i):=50+random*MAXVAL
WEIGHT(i):=1+random*MAXWEIGHT
end-do

MaxVal:= sum(i in Items) VALUE(i)*x(i) ! Objective: maximize total value

forall(i in Items) do
WeightUncertanty(i) <= WTPERCENT*WEIGHT(i) ! Uncertainty is a percentage of

! the expected weight
WeightUncertanty(i) >= 0 ! and only expected to go up this time
end-do
WtMax:= sum(i in Items) (WEIGHT(i) + WeightUncertanty(i))*x(i) <= WTMAX

! Weight restriction

maximize(MaxVal)

The new model expects a 30% maximum deviation from the expected weight. Solving it we get
141.751.

Objective: 141.751
Item Weight Value
1: 0 74.37 118.04
2: 1 62.34 141.75
3: 0 27.74 114.85
4: 0 53.17 100.60
5: 0 74.02 65.82

The solution has shifted to pick the most valuable item only. Increasing the weight of the selected
item by the allowed 30% it becomes 81.042. The optimal solution is robust, i.e., for any binary
solution with a larger objective function there exists a vector of uncertains that would violate the
robust constraint. The objective has decreased significantly because of uncertainty; the difference
in objective functions between the original problem and the robust version is often referred to as
the price of robustness [BS04]. If a subset of the uncertainty set is used, for example with a
smaller value of WTPERCENT, the effect of uncertainty decreases and we can obtain a (still robust)
solution with a larger objective function. On the contrary, increasing WTPERCENT is equivalent to
increasing uncertainty, which reduces the objective function value of the robust optimal solution.

Note the explicit non-negativity restrictions on the uncertain coefficients. There is no default
lower bound imposed on uncertains, in contrast to traditional decision variables; this is to reflect
that uncertainty is not typically biased toward positive values.

Even if a robust modelling feature makes solving such a model simple, it is important to realize
that when each individual uncertain is independently bounded by simple bounds only, the same
model can be derived by modifying all coefficients in the way that restricts the constraint the
most. In the knapsack example, as all variables must be nonnegative and all weights are also
non-negative, this means adding the upper bound of the uncertains to the original coefficients.

declarations
Items=1..NUM ! Index range for items
VALUE: array(Items) of real ! Value of items
WEIGHT: array(Items) of real ! Weight of items
x: array(Items) of mpvar ! Decision variables
end-declarations

forall(i in Items) x(i) is_binary ! All x are 0/1

setrandseed(5);
forall(i in Items) do
VALUE(i):=50+random*MAXVAL
WEIGHT(i):=1+random*MAXWEIGHT

Introduction c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 5

Robust Optimization with Xpress

end-do

MaxVal:= sum(i in Items) VALUE(i)*x(i) ! Objective: maximize total value
WtMax:= sum(i in Items) WEIGHT(i)*(1+WTPERCENT)*x(i) <= WTMAX

! Weight restriction

maximize(MaxVal)

Indeed, the solution remains 141.751.

Objective: 141.751
Item Weight Value
1: 0 74.37 118.04
2: 1 62.34 141.75
3: 0 27.74 114.85
4: 0 53.17 100.60
5: 0 74.02 65.82

1.2.2 Linear constraints on the uncertainty sets

Bound constraints are only an example of the possible uncertainty sets we can model. Let us
suppose that some or all of the uncertains can be aggregated and that we can write a single
uncertain constraint with all of them. Let us refine the example from the simple bounds case, and
require instead that the sum of the uncertains is at most 10% of the total weight.

parameters
NUM=5 ! Number of items
MAXVAL=100 ! Maximum value
MAXWEIGHT=80 ! Maximum weight
WTMAX=102 ! Max weight allowed for haul
WTPERCENT=0.3 ! Uncertainty as a percentage
end-parameters

declarations
Items=1..NUM ! Index range for items
VALUE: array(Items) of real ! Value of items
WEIGHT: array(Items) of real ! Weight of items
x: array(Items) of mpvar ! Decision variables
WeightUncertanty: array(Items) of uncertain ! Uncertains representing

! deviation from weight
end-declarations

forall(i in Items) x(i) is_binary ! All x are 0/1

setrandseed(5);
forall(i in Items) do
VALUE(i):=50+random*MAXVAL
WEIGHT(i):=1+random*MAXWEIGHT
end-do

MaxVal:= sum(i in Items) VALUE(i)*x(i) ! Objective: maximize total value

forall(i in Items) do
WeightUncertanty(i) >= 0
end-do

sum(i in Items) WeightUncertanty(i) <= WTPERCENT * sum(i in Items) WEIGHT(i)
WtMax:= sum(i in Items) (WEIGHT(i) + WeightUncertanty(i))*x(i) <= WTMAX

! Weight restriction

maximize(MaxVal)

While this sounds reasonable, because of the large right-hand side (10% of the total weight) the

Introduction c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 6

Robust Optimization with Xpress

modified model is subject to a very conservative uncertainty set and will solve to a solution of all
zeros.

Objective: 0
Item Weight Value
1: 0 74.37 118.04
2: 0 62.34 141.75
3: 0 27.74 114.85
4: 0 53.17 100.60
5: 0 74.02 65.82

This behavior highlights how robust optimization works. When moving from the previous
uncertainty set, with a small upper bound on the uncertains, to the new uncertainty set, we have
in fact relaxed the uncertainty set and have made the feasible space of the robust opponent
significantly larger, making it possible that all uncertainty can be placed on a single item. Since
each item can be too heavy even individually, the all zero solution becomes the only feasible one.
This is a very important note to the behaviour of robust optimization. When the uncertainty set is
relaxed, the robust counterpart becomes more restrictive. Vice versa, to relax a robust constraint
(and make it less conservative), its corresponding uncertainty set needs to be tightened.

A solution to the model in the example is then to restrict the feasible space of the uncertain
values, that is, to tighten the uncertainty set by adding new uncertain constraints. In fact, these
constraints would need to limit the amount of uncertainty per coefficient and will resemble the
simple bound case in effect.

An uncertainty set defined by a set of linear constraints is often referred to as a polyhedral
uncertainty set. It is important to note that polyhedral uncertainty sets have very important
applications, but care must be taken when applying them as the example above has shown.

1.2.3 Ellipsoidal uncertainty sets

As we have seen with the previous example, the robust counterpart or opponent can take full
advantage of the vertex solutions of a polyhedral uncertainty set making the model more
conservative than possibly intended. This could be countered by either restricting such constraints
or by refining the set, for example adding new linear constraints. It is easy to see that this is an
approximation only to the underlying problem, and may be impractical in larger dimensions.

If the uncertainty set is known to be described by a quadratic constraint, for instance we know
that the norm of the vector of the uncertains is bounded from above, then we can use ellipsoidal
uncertainty sets. Another use for ellipsoidal uncertainty comes when the uncertainty set can be
described by a confidence ellipsoid that is defined by a mean vector a, a covariance matrix Q, and
a level of confidence α. In this case, the uncertainty set is of the form (u− a)TQ(u− a) ≤ α.

parameters
NUM=5 ! Number of items
MAXVAL=100 ! Maximum value
MAXWEIGHT=80 ! Maximum weight
WTMAX=102 ! Max weight allowed for haul
WTPERCENT=0.3 ! Uncertainty as a percentage
end-parameters

declarations
Items=1..NUM ! Index range for items
VALUE: array(Items) of real ! Value of items
WEIGHT: array(Items) of real ! Weight of items
x: array(Items) of mpvar ! Decision variables
WeightUncertanty: array(Items) of uncertain ! Uncertains representing

! deviation from weight
end-declarations

Introduction c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 7

Robust Optimization with Xpress

forall(i in Items) x(i) is_binary ! All x are 0/1

setrandseed(5);
forall(i in Items) do
VALUE(i):=50+random*MAXVAL
WEIGHT(i):=1+random*MAXWEIGHT
end-do

MaxVal:= sum(i in Items) VALUE(i)*x(i) ! Objective: maximize total value

sum(i in Items) WeightUncertanty(i)^2 <= WTPERCENT * sum(i in Items) WEIGHT(i)
WtMax:= sum(i in Items) (WEIGHT(i) + WeightUncertanty(i))*x(i) <= WTMAX

! Weight restriction

maximize(MaxVal)

This model gives the desired solution as shown below.

Objective: 215.445
Item Weight Value
1: 0 74.37 118.04
2: 0 62.34 141.75
3: 1 27.74 114.85
4: 1 53.17 100.60
5: 0 74.02 65.82

Note that polyhedral uncertainty creates a robust counterpart that is of the same class as the
original problem, as it amounts to adding a set of linear constraints. This is not the case with
ellipsoidal uncertainty, which creates a robust counterpart that contains one second-order conic
constraint for each robust constraint subject to ellipsoidal uncertainty, and hence may change the
nature of the problem: if the original problem is a Linear Programming (LP) problem, the robust
counterpart is a Second Order Conic Programming (SOCP) problem; if the original problem is a
Mixed Integer Linear Programming (MILP) problem, the robust counterpart is a MISOCP. While
solvers for MISOCP are now more powerful, a MISOCP problem is generally more difficult to solve
than a MILP.

1.2.4 Equality constraints and uncertain values with no uncertain constraints

At this point it is worth mentioning some pitfalls of robust optimization that one needs to be
careful about. First, equality robust constraints are very restrictive in robust optimization.

declarations
x, y, z : mpvar
e : uncertain
end-declarations

e <= 1
e >= 0

x + y + e*z = 10

maximize(z)

In the solution to this problem, z will always be zero. The reason is simple: whenever z equals to
a non-zero value, if the value of variables x and y are fixed, any change in the value of the
uncertain e will make the equality constraint infeasible. In general, the effect of uncertainty in
equality robust constraints is to project the feasible space of the original problem to a smaller
dimensional one.

Introduction c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 8

Robust Optimization with Xpress

Second, it is always beneficial to make sure that the uncertainty set is bounded from both below
and above. The small example below shows the same effect as the equality constraint’s case.

declarations
x, y, z : mpvar
e : uncertain
end-declarations

x + y + e*z <= 10

maximize(z)

Here z will again solve to zero, as for any nonzero value of z a large enough e would make the
constraint infeasible. Often, such missing bounds lead to an infeasible robust optimization
problem.

1.2.5 Mixing uncertainty sets and types

Due to the theory of robust optimization, it is important to note that there are limitations on
how uncertains can be used in uncertainty sets and robust constraints.

The most prominent restriction prohibits, by default, the use of the same uncertain values in
between different robust constraints. This restriction applies to all uncertains that are connected
to different robust constraints through any uncertain constraints, not only if appearing directly.
This restriction is enforced by virtue of how the corresponding robust counterparts are created,
which allows the opponent to select its strategy, i.e. the value of an uncertain, on a per-constraint
basis. Therefore, if the same uncertain appears in two robust constraints its value is allowed to
take different values in each robust constraint. However, it is often convenient to make use of
this behaviour if the same uncertain set description is to be used for multiple robust constraints.

Consider the following example.

declarations
x, y: mpvar
e, f : uncertain
end-declarations

x*e <= 1
y*f <= 1

e >= 0
f >= 0
e+f <= 1

maximize(x+y)

The example will not solve using default settings, as the uncertain constraint e + f ≤ 1 connects
the two robust constraints to the same uncertainty set, thereby they overlap. Setting
ROBUST_UNCERTAIN_OVERLAP to true will allow for the problem to be solved.

declarations
x, y: mpvar
e, f : uncertain
end-declarations

x*e <= 1
y*f <= 1

e >= 0

Introduction c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 9

Robust Optimization with Xpress

f >= 0
e+f <= 1

setparam("XPRS_PROBNAME","h")

setparam("ROBUST_UNCERTAIN_OVERLAP", true);

However, the solution returned is x=1=y, which can easily be seen as non-optimal if e + f ≤ 1 is
satisfied. What happens is that allowing the overlap will result in the opponent being able to
optimize its decisions independently for the two robust constraints. This is the reason why this
mode is not allowed by default; although often this is exactly what the modeller wants, setting
ROBUST_UNCERTAIN_OVERLAP to true allows for reusing the same uncertainty set definition
multiple times without the need to repeat the uncertain constraints. However, care must be
taken as the uncertain values do not take a defined value upon solving the problem and it might
be different for different robust constraints.

1.2.6 Cardinality restrictions for uncertains

Cardinality restrictions allow for limiting the number of uncertain values that are different from
zero. In other words, a cardinality constraint limit the number of uncertains that are non-zero or,
more in general, not at their nominal value. Due to the way in which the robust counterpart is
created, uncertains that appear in a cardinality restriction should always have reasonable lower
and upper bounds.

In the next example we show how to use uncertains in multiple robust constraints (i.e. in
uncertains that overlap). The example is a small knapsack type problem, where only 1 of the 3
items is allowed to differ in weight from zero.

declarations
x,y,z: mpvar
ex, ey, ez: uncertain
S={ex,ey,ez}

end-declarations

x is_binary ; y is_binary ; z is_binary

20*x + 10*y + 5*z >= 20

ex>=0 ; ex<=1
ey>=0 ; ey<=1
ez>=0 ; ez<=1

cardinality({ex,ey,ez},1) ! Allow only one of the uncertains to be nonzero

setparam("ROBUST_UNCERTAIN_OVERLAP",true) ! allow overlaps

10*(x-x*ex) + 10*(y-y*ey) + 10*(z-z*ez) >= 10
10*(x-x*ex) + 10*(y-y*ey) + 10*(z-z*ez) <= 20

maximize(x+y+z)

The solution returned is x=y=1 and z=0. It is important to emphasize that, as for the other
constraints, the cardinality restriction is taken into consideration on a per robust constraint basis,
and the model does not solve unless the ROBUST_UNCERTAIN_OVERLAP parameter is set to true.

1.2.7 Using historical data - scenarios

Scenarios are an efficient way of building robust optimization problems using historical

Introduction c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 10

Robust Optimization with Xpress

realizations of the uncertains. Suppose we have a vector u of uncertains. We do not know an
uncertainty set that would fit our model, but for the uncertain vector we have a database of
records containing the value of each uncertain for each month of the past 20 years. Therefore we
would like a model where one or more constraints are satisfied for each record of the uncertain
vector in our database. Although we may not have a good approximation of the uncertainty set,
robustness against historical data might be sufficient.

Declaring a scenario is equivalent to manually adding all the corresponding constraints for all
realizations to the problem; this capability is made available to make sure that the scenario data
are efficiently handled by the solver and to avoid the creation of an overly large problem.

Scenarios can be driven by the historical data, as shonwn in the next extension of the knapsack
problem analyzed before where a number of historical measurements have been taken.

parameters
NUM=5 ! Number of items
MAXVAL=100 ! Maximum value
MAXWEIGHT=80 ! Maximum weight
WTMAX=102 ! Max weight allowed for haul
UNCERTAINTY_LEVEL=0.3 ! How much we are uncertain about the weight
HISTORIC_PERIODS=100 ! Number of scenarios
end-parameters

declarations
Items=1..NUM ! Index range for items
VALUE: array(Items) of real ! Value of items
WEIGHT: array(Items) of real ! Weight of items
UncertainWeight:array(Items) of uncertain
x: array(Items) of mpvar ! 1 if we take item i; 0 otherwise
historical_weights: array (range, set of uncertain) of real
end-declarations

forall(i in Items) x(i) is_binary ! All x are 0/1

setrandseed(5);
forall(i in Items) do
VALUE(i):=50+random*MAXVAL
WEIGHT(i):=1+random*MAXWEIGHT
end-do

MaxVal:= sum(i in Items) VALUE(i)*x(i) ! Objective: maximize total value
WtMax:= sum(i in Items) (WEIGHT(i)+UncertainWeight(i))*x(i) <= WTMAX

! Generate historical data, this would be data collected from actual realizations
forall(period in 1..HISTORIC_PERIODS, i in Items)
historical_weights(period, UncertainWeight(i)) :=
WEIGHT(i)*UNCERTAINTY_LEVEL*random

! Generate a solution that would be feasible for ALL historic realizations
scenario(historical_weights)

maximize(MaxVal)

It is beneficial to examine the deterministic equaivalent to a scenario based robust model.
Consider the following simple scenario based model.

declarations
x, y : mpvar
e, f : uncertain
historical_data: array (range, set of uncertain) of real
end-declarations

! load historical data for e and f
historical_data(1, e) := 1
historical_data(1, f) := 2

Introduction c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 11

Robust Optimization with Xpress

historical_data(2, e) := 3
historical_data(2, f) := 1
historical_data(3, e) := 3
historical_data(3, f) := 2

e*x + f * y <= 1

! Generate a solution that would be feasible for ALL historic realizations
scenario(historical_data)

maximize(x+y)

Its deterministic equivalent is:

declarations
x, y : mpvar
e, f : uncertain
historical_data: array (range, set of uncertain) of real
end-declarations

scenario1 := 1 * x + 2 * y <= 1
scenario2 := 3 * x + 1 * y <= 1
scenario3 := 3 * x + 2 * y <= 1

! Generate a solution that would be feasible for ALL historic realizations
scenario(historical_data)

maximize(x+y)

1.2.8 Uncertainty in the objective

When uncertain coefficients are introduced in the objective, the solution to the robust
counterpart reflects the most conservative objective. More specifically, in a minimization problem
where the objective function is f(x; u), where x is a vector of variables and u is a vector of
uncertains, the optimal solution is one that minimizes the function g(x) = maxuf(x; u). This is
equivalent to converting the objective to the robust constraint z ≥ f(x; u), where a new auxiliary
variable z is used to represent the objective.

1.3 Nominal values: centered and uncentered uncertainty

The nominal value of an uncertain represents its default value, a real-valued number which is
the expected or non-robust version of the uncertain. In the examples so far, all uncertainty has
been treated so that the nominal value of each uncertain is zero, and in effect the uncertain has
been treated as an error term. The default value or center of an uncertain can be shifted by
specifying a nominal value that is different from zero. Using nominal values has the advantage
that they allow one to work on both the robust optimization model and on a deterministic one
obtained by fixing the uncertains (to their nominal values) in the same model.

It is possible to work with the uncertains as actual uncertain coefficients. Before detailing the use
cases and rules when working with nominal values of uncertains, let us give an example on
centered and uncentered uncertains.

I. Using zero centered uncertainty, where an uncertain is modelled as a zero centered error, i.e.,
uncertanty with zero nominal value:

(5 + uncertain)x ≤ 1

Introduction c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 12

Robust Optimization with Xpress

is expressed as:

declarations
x : mpvar
u : uncertain

end-declarations

(5+u)*x <= 1

II. Uncertainty as coefficient, where the uncertan is modelled as a coefficient, i.e. an uncertain
coefficient with 5 as its nominal value:

(5 + uncertain)x ≤ 1

can also be expressed as:

declarations
x : mpvar
u : uncertain

end-declarations

u:= 5 ! setting the nominal value
u*x <= 1

As the example above shows, a nominal value is set using the assignment operator ’:=’. It is
important to distinguish this from the equal operator ’=’, which would fix the value of the
uncertain to the given value instead.

1.3.1 The price of robustness

Either when using zero-centered uncertains or when setting up nominal values, it is possible to
solve the model with the uncertainty removed, i.e. all uncertain coefficients being fixed to their
nominal values. This makes it possible to calculate the cost of having uncertainty in the model
(often referred to as the price of robustness), as well as to check whether the model is feasible
without the added uncertainty. The next example shows how to solve with all uncertains fixed to
their nominal values.

declarations
x : mpvar
u : uncertain
end-declarations

0 <= u
u <= 3

(1+u)*x <= 1

maximize(XPRS_NOMINAL, x)
nominal_objective := getobjval
writeln("Objective at nominal values:", nominal_objective);

maximize(x)
robust_objective := getobjval
writeln("Robust objective:", robust_objective);

writeln("Price of robustness:", nominal_objective - robust_objective);

The output of the model is:

Introduction c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 13

Robust Optimization with Xpress

Objective at nominal values: 1
Robust objective: 0.25
Price of robustness: 0.75

When no nominal value is defined for an uncertain, the default nominal value of zero is used.

1.3.2 Working with nominal values

The workings of nominal values are defined by two simple rules.

Rule 1: setting a nominal value is shifting the domain of the uncertain.

Setting a nominal value for an uncertain to u:=a replaces all later occurrences of u with u+a.

The following simple model solves to x = 0.5:

declarations
x : mpvar
u : uncertain
end-declarations

0 <= u
u <= 1

(1+u)*x <= 1

maximize(x)

as the worst case is when u takes its upper bound of 1.

Changing the nominal value of u to say 2, u is replaced by u+2 and the model solves to 0.25
instead.

declarations
x : mpvar
u : uncertain
end-declarations

0 <= u
u <= 1

u := 2 ! shifts the center of the uncertain

(1+u)*x <= 1

maximize(x)

The uncertain u still takes its upper bound of 1, but the constraint loaded now reads
(1 + u + 2)x ≤ 1 with u taking on its upper bound of 1.

Rule2: a changed nominal value only affects robust and uncertainty set constraints that are
defined after it has been assigned.

This behaviour is best understood when put into analogy with how real-valued parameters
behave. Looking at the example of rule 1, this behaviour is already observed: changing the
nominal value has only affected the robust constraint but not the bounds declared before this
point.

declarations
x : mpvar
r : real

Introduction c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 14

Robust Optimization with Xpress

end-declarations

r := 3

c1 := (1+r)*x <= 1

r := 5

maximize(x)

The model solves to x = 0.25, that is the actual value of r at the time of declaring the
constraint has been used (3), and redefining it later had no effect on the constraint. This
behaviour is reproduced when working with the nominal values of uncertains.

declarations
y : mpvar
u : uncertain
end-declarations

u := 3

(1+u)*y <= 1

u := 5

maximize(XPRS_NOMINAL, y)

The nominal version of the model where the uncertain coefficients are used solves (notice the
nominal argument to maximize) to the same as when real valued coefficients are used: y = 0.25.

These rules offer significant flexibility on how to use the nominal values for uncertains, but care
must be taken and the effects of rule 2 should always be kept in mind.

1.3.3 Using nominal values to shift the uncertainty set

Nominal values can be used to shift an uncertain coefficient while keeping its effect around the
nominal values the same. Consider the following example:

declarations
x,y : mpvar
e,f : uncertain
end-declarations

e^2 + f^2 <= 2 ! An ellipsoidal uncertainty constraint

e*x + f*y <= 1

maximize(x + y)

The solution to the model is x=0.5, y=0.5. The values of uncertains e and f can take their value
from a ball of radius √2. When nominal values are added, the model becomes:

declarations
x,y : mpvar
e,f : uncertain
end-declarations

e^2 + f^2 <= 2

e := 1
f := 1

Introduction c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 15

Robust Optimization with Xpress

e*x + f*y <= 1

maximize(x + y)

The solution moves to x=0.25, y=0.25. To explore the reasons for this change, let us substitute the
effect of the nominal values directly into the problem:

declarations
x,y : mpvar
e,f : uncertain
end-declarations

e^2 + f^2 <= 2

(e+1)*x + (f+1)*y <= 1

maximize(x + y)

The range of uncertains has remained the same, but in the robust constraint the values around
which they are centered shift accordingly to the nominal values.

1.3.4 Using nominal valued uncertains as coefficients

Uncertains can be assigned a nominal value before the first time they are used, however they
may behave in a way that is not expected. Consider three versions of the same model:

Case 1 Case 2 Case 3

No nominal values are set Nominal values are set to 1 Nominal values are set to
different values

declarations

x,y : mpvar

e,f : uncertain

end-declarations

e + f ≤ 2

e*x + f*y ≤ 1

maximize(x + y)

declarations

x,y : mpvar

e,f : uncertain

end-declarations

e := 1

f := 1

e + f ≤ 2

e*x + f*y ≤ 1

maximize(x + y)

declarations

x,y : mpvar

e,f : uncertain

end-declarations

e := 2

f := 5

e + f ≤ 2

e*x + f*y ≤ 1

maximize(x + y)

All three versions of the model solve to the same solution of x = y = 0.5;

The reasons behind this may not be immediately obvious but become clear if we write out the
effect of rule 1 on, say, the 3rd case:

Case 3 becomes which is
declarations

x,y : mpvar

e,f : uncertain

end-declarations

e := 2

f := 5

e + f ≤ 2

e*x + f*y ≤ 1

maximize(x + y)

declarations

x,y : mpvar

e,f : uncertain

end-declarations

e+2 + f+5 ≤ 2

(e+2)*x + (f+5)*y ≤ 1

maximize(x + y)

declarations

x,y : mpvar

e,f : uncertain

end-declarations

e + f ≤ -5

(e+2)*x + (f+5)*y ≤ 1

maximize(x + y)

Introduction c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 16

Robust Optimization with Xpress

As the shifts are also applied to the uncertain constraints (including bounds), in the example they
cancel each other out: the linear robust constraints and the corresponding error constraints have
been shifted together.

However, there is a very real difference should the model be solved using its nominal values. To
demonstrate this, let us explicitly write out the nominal equivalent for the 3 cases:

The nominal equivalent
of case 1:

The nominal equivalent
of case 2:

The nominal equivalent
of case 3:

declarations

x,y : mpvar

e,f : uncertain

end-declarations

0*x + 0*y ≤ 1

maximize(x + y)

declarations

x,y : mpvar

e,f : uncertain

end-declarations

1*x + 1*y ≤ 1

maximize(x + y)

declarations

x,y : mpvar

e,f : uncertain

end-declarations

2*x + 5*y ≤ 1

maximize(x + y)

is unbounded. solves to x=1 and y=0. solves to x=0.5 and y=0.

1.4 Examples of robust models

In the remainder of this whitepaper we provide several full-blown examples of robust
optimization applied to real-world problems. The model and data files associated with these
examples are available in the Xpress 7.7 distribution (subdirectory examples/robust/Mosel).

Introduction c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 17

Robust Optimization with Xpress

2 Robust shortest path

2.1 Problem description

Every day you are driving from your home to your work location. There are a number of
alternative routes that you might use. You may think of these routes as a set of lines that connect
nodes (=intersection points of routes). For every line (edge) we know the required travel time for
getting from one end point to the other. What we don’t know is the occurrence of roadworks or
similar incidents that slow down traffic and hence cause delays.

4

5 7

8

3

6

2

(3,2)

(3,6)

(1,7)

(4,5)

(2,4)

(3,9)

(3,6)

(4,7)

(2,5) (2,5)

(2,3)

(4,6)

(3,3)

(5,5)

(3,4)
(4,2)

(4,6)

Source Sink

Nodes
Start/end points

Figure 1: Road network

Figure 1 shows an example of a road network where the journey start and end points are marked
as ’Source’ and ’Sink’ respectively. The label tuples (L,D) on the edges indicate the length (travel
time) of an edge and the maximum delay D that may result from roadwork on this edge. In this
data instance, the times in both directions for traveling along an edge are the same and the
maximum delay in both senses is also the same, but in the general case the values might actually
be different.

2.2 Mathematical formulation

2.2.1 Shortest path problem

The problem of finding the least cost route through a network is known as the shortest path
problem. We can state this problem via binary variables usea associated with each arc a where
usea = 1 if arc a is selected and 0 otherwise.

For every node in the network except the source and sink nodes we establish a flow balance

Robust shortest path c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 18

Robust Optimization with Xpress

constraint: the sum of incoming travel is the same as the outgoing travel. The source node only
has a single outgoing used arc, the sink node has a single incoming used arc. In the following, we
define an arc a via its origin ARCa,1 and its destination node ARCa,2.

min
∑

a∈Arcs

LENa · usea

s.t.
∑

a∈Arcs|ARCa,1=Source

usea = 1,
∑

a∈Arcs|ARCa,2=Sink

usea = 1

∑
a∈Arcs|ARCa,2=Source

usea = 0,
∑

a∈Arcs|ARCa,1=Sink

usea = 0

∀n ∈ Nodes− {Source, Sink} :
∑

a∈Arcs|ARCa,2=n

usea =
∑

a∈Arcs|ARCa,1=n

usea

∀a ∈ Arcs : usea ∈ {0, 1}

In the model formulation above, we can add the delays caused by roadworks as an additional
coefficient to the objective function so that they are taken into account by the shortest path
calculation:

min
∑

a∈Arcs

(LENa + MAXDELAYa) · usea

However, this means that we assume

(a) all delays take their maximum value and

(b) all roads incur delays.

These assumptions yield an overly conservative prediction. This case provides an upper bound on
the total travel time estimate but it can certainly be considered as fairly unlikely to happen.

2.2.2 Robust optimization problem

The problem that we really wanted to state is

(a) delays take values up to their specified maximum value and

(b) up to N roads incur delays.

This means that the value of the delay per arc is not fixed, but uncertain. If delaya denotes the
uncertain duration of the delay associates with arc a ∈ Arcs we can state the cardinality
constrained uncertainty set as follows:

U = {delay : |{delaya : delaya > 0}| ≤ N, 0 ≤ delaya ≤MAXDELAYa∀a ∈ Arcs}

The resulting robust optimization problem then has the following form.

Robust shortest path c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 19

Robust Optimization with Xpress

min
∑

a∈Arcs

(
LENa + delaya

)
· usea

s.t.
∑

a∈Arcs|ARCa,1=Source

usea = 1,
∑

a∈Arcs|ARCa,2=Sink

usea = 1

∑
a∈Arcs|ARCa,2=Source

usea = 0,
∑

a∈Arcs|ARCa,1=Sink

usea = 0

∀n ∈ Nodes− {Source, Sink} :
∑

a∈Arcs|ARCa,2=n

usea =
∑

a∈Arcs|ARCa,1=n

usea

∀a ∈ Arcs : usea ∈ {0, 1}
delay ∈ U = {delay : |{delaya : delaya > 0}| ≤ N, 0 ≤ delaya ≤MAXDELAYa∀a ∈ Arcs}

2.3 Implementation

The following Mosel model implements the robust optimization model from the previous section.
Notice the use of cardinality on the uncertains delay to limit the total number of occurrences
of roadworks to at most NWORK, the parameter for N = 2. The uncertains that are used in such a
cardinality constraint need to have explicit lower and upper bounds set.

model "road network"
uses "mmxprs", "mmrobust"

parameters
DATAFILE="roads_9.dat"
NWORK = 2 ! Number of roadworks

end-parameters

declarations
Nodes: range ! Set of nodes
ARC: array(Arcs:range,1..2) of integer ! Arc origins/destinations
LEN,MAXDELAY: array(Arcs) of real ! Length and max delay per arc
Source,Sink: integer ! Source and sink node numbers

use: array(Arcs) of mpvar ! 1 iff arc is used
TotalLength: robctr ! Objective function
delay: array(Arcs) of uncertain ! Uncertain delay

end-declarations

!**** Input datafile ****
initializations from DATAFILE
Nodes Arcs Source Sink ARC
[LEN,MAXDELAY] as "ArcData"

end-initializations

!**** Robust problem formulation ****
forall(a in Arcs) use(a) is_binary

! Sink and source of flow
sum(a in Arcs | ARC(a,1)=Source) use(a)=1
sum(a in Arcs | ARC(a,2)=Sink) use(a)=1
sum(a in Arcs | ARC(a,2)=Source) use(a)=0
sum(a in Arcs | ARC(a,1)=Sink) use(a)=0

! Flow balance in intermediate nodes
forall(n in Nodes-{Source,Sink})
sum(a in Arcs | ARC(a,2)=n) use(a) = sum(a in Arcs | ARC(a,1)=n) use(a)

! Random construction work on NWORK arcs
forall(a in Arcs) delay(a) <= MAXDELAY(a)

Robust shortest path c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 20

Robust Optimization with Xpress

forall(a in Arcs) delay(a) >= 0
cardinality(union(a in Arcs) {delay(a)}, NWORK)

! Shortest path length
TotalLength:= sum(a in Arcs) (LEN(a)+delay(a))*use(a)

!**** Solving ****
minimize(TotalLength)

! Solution reporting
if getprobstat=XPRS_OPT then
writeln("Robust shortest path: ", getobjval)
writeln("Delay: ", getobjval - sum(a in Arcs) LEN(a)*use(a).sol)
forall(a in Arcs | use(a).sol>0)
writeln(if(ARC(a,1)=Source, "Source", string(ARC(a,1))), " -> ",

if(ARC(a,2)=Sink, "Sink", string(ARC(a,2))), "; ")
else
writeln("No solution")

end-if

end-model

2.4 Results

Figure 2 shows the path through the network defined by the robust solution; it has a total length
of 21. The path it follows, i.e., Source→ 2→ 5→ 6→ 7→ Sink, has a nominal length of 14, but if
roads 2–5 and 6–7 have construction work we must add a total delay of 7. Given that these two
roads have maximum delay (together with the combination of roads 2–5 and 5–6), any other
combination of at most two roads with construction will result in a total duration of 21 minutes
or less.

4

5 7

8

3

6

2

3

3

1

4

2

3

3

4

2 2

2

4

3

5

3
4

4

Source Sink

Path length: 21

Nodes
Start/end points

Figure 2: Robust solution

Robust shortest path c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 21

Robust Optimization with Xpress

Consider now the solution in Figure 3, obtained by ignoring the delays caused by road work. The
optimal path in this case is Source→ 3→ 8→ Sink, with a total duration of 11. However, this is a
very optimistic solution as in the worst case the roads Sink–3 and 3–8 may have construction
work, in which case the travel time increases by 13 minutes to 24, clearly worse than the robust
solution of 21 minutes.

4

5 7

8

3

6

2

3

3

1

4

2

3

3

4

2 2

2

4

3

5

3
4

4

Source Sink

Path length: 11

Nodes
Start/end points

Figure 3: Zero-delay solution

Finally, let us take a look at the solution obtained by setting all arc costs to their maximum value,
i.e., a shortest path computed on a graph where all edges are assumed to have their maximum
delay. As shown in Figure 4, the solution is the path Source→ 2→ 4→ 7→ Sink, and has a
duration of 27 minutes. Under the assumption that at most two roads have construction work,
this travel time is meaningless: in fact, the nominal travel time is 13 minutes and the worst-case
travel time is obtained with road work on 2–4 and 4–7, which add 10 minutes to the solution and
hence yield a total travel time of 23, still worse than the robust shortest path of 21 depicted
above.

We recap the above results in Table 1, which shows the travel time for the three approaches
(robust, shortest path with nominal values, shortest path where all roads have maximum delay) in
three cases: no road work, road work in N = 2 edges of the graph, and road work everywhere, i.e.
N is infinite.

Table 1: Path costs

N 0 2 +inf

Robust 14 21 29

Nominal 11 24 30

All delays 13 23 27

Note that, under the assumption we have made at the beginning of this section, the only solution

Robust shortest path c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 22

Robust Optimization with Xpress

4

5 7

8

3

6

2

Source Sink

Path length: 27

3+2

3+6

1+7

4+5

2+4

3+9

3+6

4+7

2+5 2+5

2+3

4+6

3+3

5+5

3+4
4+2

4+6

Nodes
Start/end points

Figure 4: Maximum-delay solution

that truly solves the problem with minimum worst-case travel time is the one that was found
using the uncertains to model our knowledge, albeit limited, of the road works in this network.

Robust shortest path c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 23

Robust Optimization with Xpress

3 Production planning under demand uncertainty

3.1 Problem description

As the manager of a plant producing drinking glasses you wish to plan the production for the
next 12 weeks. Your plant produces six different types (V1 to V6) in batches of 1000 glasses;
batches may be incomplete (fewer than 1000 glasses). For every glass type you have got demand
estimate for the 12 coming weeks. The initial stock and as well as the required final stock level (in
thousands) are known. Per batch of every glass type, the production and storage costs in BC are
given, together with the required working time for workers and machines (in hours), and the
required storage space (measured in numbers of trays).

3.2 Mathematical formulation

3.2.1 Multi-period, multi-item production planning problem

Let PRODS be the set of products (glass types) and WEEKS = {1, . . . , NT} the set of time periods.
We write DEMpt for the demand for product p in time period t. We also have CPRODp and
CSTOCKp the production and storage cost for glass type p. This cost is identical for all time
periods, but it would be easy to model a different cost per time period by adding an index for the
time period.

TIMEWp and TIMEMp denote the worker and machine times respectively required per unit of
product p, and correspondingly, SPACEp the storage area. The initial stock ISTOCKp is given, as is
the desired final stock level FSTOCKp per product (see data in Table 2). We write CAPW and
CAPM for the capacities of workers and machines respectively, and CAPS for the capacity of the
storage area.

To solve this problem, we need variables producept to represent the production of glass type p in
time period t. The variables corresponding to the stock level of every product p at the end of
period t are called storept. By convention, the initial stock level ISTOCKp may be considered as the
stock level at the end of time period 0 and we use the notation storep0 to simplify the
formulation of the stock balance constraints:

∀p ∈ PRODS, t ∈WEEKS : storept = storep,t−1 + producept − DEMpt

These stock balance constraints state that the quantity storept of product that is held in stock at
the end of a time period t equals the stock level storep,t−1 at the end of the preceding period plus
the production producept of the time period t minus the demand DEMpt of this time period.

We wish to have a certain amount of product in stock at the end of the planning period to avoid
that stocks run down to zero at the end of the planning horizon. These constraints on the final
stock levels are expressed by the constraints:

∀p ∈ PRODS : storep,NT ≥ FSTOCKp

We now formulate the various capacity constraints for every time period. The following
constraints guarantee that the capacity limits on manpower, machine time, and storage space are
kept:

∀t ∈WEEKS :
∑

p∈PRODS

TIMEWp · producept ≤ CAPW

∀t ∈WEEKS :
∑

p∈PRODS

TIMEMp · producept ≤ CAPM

Production planning under demand uncertainty c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 24

Robust Optimization with Xpress

∀t ∈WEEKS :
∑

p∈PRODS

SPACEp · producept ≤ CAPS

The cost function that is to be minimized is the sum of production and storage costs for all
products and time periods.

min
∑

p∈PRODS

∑
t∈WEEKS

(
CPRODp · producept + CSTOREp · storept

)
We obtain the complete mathematical model by the non-negativity constraints for the
production variables and for the stored quantities to the constraints described above.

min
∑

p∈PRODS

∑
t∈WEEKS

(
CPRODp · producept + CSTOREp · storept

)
s.t. ∀p ∈ PRODS, t ∈WEEKS : storept = storep,t−1 + producept − DEMpt

∀p ∈ PRODS : storep,NT ≥ FSTOCKp

∀t ∈WEEKS :
∑

p∈PRODS

TIMEWp · producept ≤ CAPW

∀t ∈WEEKS :
∑

p∈PRODS

TIMEMp · producept ≤ CAPM

∀t ∈WEEKS :
∑

p∈PRODS

SPACEp · producept ≤ CAPS

∀p ∈ PRODS, t ∈WEEKS : producep,t ≥ 0

∀p ∈ PRODS, t ∈WEEKS : storep,t ≥ 0

3.2.2 Robust optimization problem

Various assumptions behind the mathematical model that we have stated above might be
questioned:

1. Constant resource capacity: availability of personnel most likely will not be constant over
time (subject to holidays, training, sick leave etc.) and there is also a risk of scheduled
(maintenance) or unscheduled (breakdown) machine outages.

2. Exact demand quantities are known: demand forecasts typically are estimates, most often
resulting from an analysis of historical values.

Workers’ absence

The case of machine outage (formulated as k contingencies) is studied in Sections 7 and 6 of this
whitepaper. Let us therefore here take a look at how we might capture the uncertainty in the
availability of personnel.

Let ABSENCEt be a maximum limit on the absence hours per time period t (the actual absence will
take at most this value), and we also know by experience what is the average absence over a
longer period of time (expressed as a percentage A of the total worker hours). We introduce
uncertains absentt to represent the actual absence hours per time period. The worker capacity
constraints from the original model are then replaced by the following:

∀t ∈WEEKS :
∑

p∈PRODS

TIMEWp · producept ≤ CAPW − absentt

absent ∈ Uabsent

Production planning under demand uncertainty c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 25

Robust Optimization with Xpress

where the polyhedral uncertainty set Uabsent is characterized by

Uabsent = {absent :
∑

t∈WEEKS

absentt ≤ A · CAPW · |WEEKS|,

0 ≤ absentt ≤ ABSENCEt∀t ∈WEEKS}

Demand scenarios

For a robust formulation of the demand, assume that we have got a number of different
scenarios—obtained from historical data for comparable periods or possibly resulting from
different forecasting methodologies—that describe the space of possible realizations of demand.
In the place of the fixed demand quantities DEMpt we now work with uncertain quantities
demandpt that are determined by the demand scenario data SCENDEMspt for a given set of
scenarios s ∈ SCEN. The demand s included in the original model formulation via the stock
balance constraints.

∀p ∈ PRODS, t ∈WEEKS : storept = storep,t−1 + producept − DEMpt

A naive ’robustification’ might attempt to simply replace the fixed demand quantities by the
uncertains demandpt. However, this approach would not lead to the desired result: by
introducing a single uncertain quantity in an equality constraint we do not leave any room for
different realizations of the uncertain. We therefore now work with the following two sets of
inequalities in the place of the stock balance constraints.

∀p ∈ PRODS, t ∈WEEKS : storept ≤ storep,t−1 + producept − demandpt

∀p ∈ PRODS, t ∈WEEKS : storept ≥ storep,t−1 + producept −maxs∈SCENSCENDEMpt

The first of these inequalities states that the demand must be satisfied from the production in a
period and the difference between stock levels at the beginning and end of the period, which
can be more easily seen in this transformed version of the inequality:

demandpt ≤ storep,t−1 + producept − storept

The second inequality forces the final stock per period to be at least what remains after satisfying
the largest possible demand.

3.3 Implementation

The standard deterministic model can be implemented as follows.

model "C-2 Glass production"
uses "mmxprs"

declarations
NT = 12 ! Number of weeks in planning period
WEEKS = 1..NT
PRODS = 1.. 6 ! Set of products

CAPW,CAPM: integer ! Capacity of workers and machines
CAPS: integer ! Storage capacity
DEM: array(PRODS,WEEKS) of integer ! Demand per product and per week
CPROD: array(PRODS) of integer ! Production cost per product
CSTOCK: array(PRODS) of integer ! Storage cost per product
ISTOCK: array(PRODS) of integer ! Initial stock levels
FSTOCK: array(PRODS) of integer ! Min. final stock levels
TIMEW,TIMEM: array(PRODS) of integer ! Worker and machine time per unit

Production planning under demand uncertainty c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 26

Robust Optimization with Xpress

SPACE: array(PRODS) of integer ! Storage space required by products

produce: array(PRODS,WEEKS) of mpvar ! Production of products per week
store: array(PRODS,WEEKS) of mpvar ! Amount stored at end of week
end-declarations

initializations from ’c2glass.dat’
CAPW CAPM CAPS DEM CSTOCK CPROD ISTOCK FSTOCK TIMEW TIMEM SPACE
end-initializations

! Objective: sum of production and storage costs
Cost:=
sum(p in PRODS, t in WEEKS) (CPROD(p)*produce(p,t) + CSTOCK(p)*store(p,t))

! Stock balances
forall(p in PRODS, t in WEEKS)
Bal(p,t):=
store(p,t) = if(t>1, store(p,t-1), ISTOCK(p)) + produce(p,t) - DEM(p,t)

! Final stock levels
forall(p in PRODS) store(p,NT) >= FSTOCK(p)

! Capacity constraints
forall(t in WEEKS) do
LimitW(t):= sum(p in PRODS) TIMEW(p)*produce(p,t) <= CAPW ! Workers
LimitM(t):= sum(p in PRODS) TIMEM(p)*produce(p,t) <= CAPM ! Machines
LimitS(t):= sum(p in PRODS) SPACE(p)*store(p,t) <= CAPS ! Storage
end-do

! Solve the problem
minimize(Cost)

! Solution printing
writeln("Total cost: ",getobjval)
end-model

Workers’ absence

For the implementation of the more fine-grained handling of workers’ absence we introduce
uncertains absent that are bounded by the estimated maximum number of absence hours per
time period (ABSENCE) and we equally assume a limit of 5% on the total absence time across the
planning period. In the work capacity constraints the absence needs to be deduced from the
theoretically available work hours (we here assume that this value is 20% higher than the default
limit in the basic model).

declarations
ABSENCE: array(WEEKS) of real ! Max. absence (hours)
absent: array(WEEKS) of uncertain ! Absence of personnel
end-declarations

! Limit on total absence (uncertainty set)
sum(t in WEEKS) absent(t) <= 0.05*CAPW*WEEKS.size
forall(t in WEEKS) absent(t) <= ABSENCE(t)
forall(t in WEEKS) absent(t) >= 0

! Uncertains occur in several constraints
setparam("ROBUST_UNCERTAIN_OVERLAP", true)

! Worker capacity constraints
forall(t in WEEKS)
LimitW(t):= sum(p in PRODS) TIMEW(p)*produce(p,t) <= CAPW*1.2 -absent(t)

Demand scenarios

For the formulation of the demand scenarios we need to modify the definition of the constraints

Production planning under demand uncertainty c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 27

Robust Optimization with Xpress

that involve demand data, that is, the stock balance constraints. Before stating the scenario
constraints, we need to copy the scenario data into the form that is expected by the scenario
construct, namely the array SCENDATA that is indexed by the scenario counter and the uncertain
demand associated with every time period.

declarations
SCEN: range ! Demand scenarios
SCENDEM: array(SCEN,PRODS,WEEKS) of integer ! Demand per product & week
demand: array(PRODS,WEEKS) of uncertain ! Uncertain demand
SCENDATA: array(SCEN,set of uncertain) of real ! Aux. data structure
end-declarations

! Demand scenarios
forall(s in SCEN, p in PRODS, t in WEEKS | SCENDEM(s,p,t)>0)
SCENDATA(s, demand(p,t)):= SCENDEM(s,p,t)

scenario(SCENDATA)

! Stock balances
forall(p in PRODS, t in WEEKS) do
Bal(p,t):=
store(p,t) <= if(t>1, store(p,t-1), ISTOCK(p)) + produce(p,t) - demand(p,t)

Bal2(p,t):=
store(p,t) >= if(t>1, store(p,t-1), ISTOCK(p)) + produce(p,t) -
max(s in SCEN) SCENDEM(s,p,t)

end-do

! Uncertains occur in several constraints
setparam("ROBUST_UNCERTAIN_OVERLAP", true)

Both sets of uncertainties can be applied at the same time. However, for the analysis of their
effect it might be preferrable to apply only one at a time.

3.4 Results

The original problem description and instance data are taken from [GHPS02] (Section 8.2
Production of drinking glasses). The costs and resource usage data for the six glass types are listed
in Table 2.

Table 2: Data for six glass types

Production cost Storage cost Initial stock Final stock Timeworker Timemachine Storage space

V1 100 25 50 10 3 2 4

V2 80 28 20 10 3 1 5

V3 110 25 0 10 3 4 5

V4 90 27 15 10 2 8 6

V5 200 10 0 10 4 11 4

V6 140 20 10 10 4 9 9

The solution of the original problem with the basic demand scenario has a total cost of BC
185,899. The resulting detailed production plan is displayed in Table 3. We find that the available
manpower is fully used most of the time (in the first week, 351 hours are worked, in all other
weeks the limit of 390 hours is reached) and the machines are used to their full capacity in certain
time periods (weeks 1-3 and 5), but the available storage space is in excess of the actual needs.

If we try to introduce robustness to such a tightly constrained problem, the outcome most likely
will be ’problem infeasible’ as there is no slack to incorporate alternatives. We have therefore
somewhat relaxed the original bound on the personnel hours, assuming that its original value
represents a rough worst-case estimate and that the actually available working hours are 20%

Production planning under demand uncertainty c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 28

Robust Optimization with Xpress

Table 3: Optimal production plan for basic demand scenario

Week 1 2 3 4 5 6 7 8 9 10 11 12

V1 Prod. 8.8 5.5 0.6 30.2 27.4 8.6 23 20 29 30 28 42

Store 38.8 22.2 4.8 - 10.4 – – – – – – 10

V2 Prod. 0 16 23 20 11 10 12 34 21 23 30 22

Store 3 – – – – – – – – – – 10

V3 Prod. 18 35 17 10 9 21 23 15 10 0 13 27

Store – – – – – – – – – – – 10

V4 Prod. 16 45 24 38 41 20 19 37 28 12 30 47

Store – – – – – – – – – – – 10

V5 Prod. 47.7 14.6 35.1 14.3 23.5 22.8 43.8 0 26.5 2.8 0 0

Store 24.7 19.3 31.4 30.8 44.2 45 70.8 40.75 39.25 35 20 10

V6 Prod. 12 18 20 19 18 35 0.8 27.2 12 49 29.2 5.8

Store – – – – – – 0.75 – – 19 27.25 10

Workers 351 390 390 390 390 390 390 390 390 390 390 390

Machines 850 850 850 753.2 850 836.8 790 675.2 742.5 650.2 641.2 641.8

Space 268.8 166.2 144.8 123 218.4 180 289.8 163 157 311 325.2 330

higher. The more fine-grained estimate of absence results in the solution summarized in Table 4.
The overall cost of BC 181,210 is slightly lower than the previous, fixed worst-case absence case.

Table 4: Summary results with robust formulation of absence

Week 1 2 3 4 5 6 7 8 9 10 11 12

Workers 243 378 370 407 325 398 383 414 412 445 429 437

CAPW-ABSENCE 437 437 429 429 414 398 398 414 445 445 429 437

Machines 609 850 736 770 736 794 772.2 739.8 803 839.5 734 747.5

Space 152.5 32 0 0 20 0 99 0 16 130 219.5 330

The scenario-based approach results in a higher total cost of BC 203,545. In the summary results in
Table 5 we observe that both, machine capacity and workers’ hours, are most of the time used at
or close to their capacity limit (850 and 429=1.1 · 390 respectively). Furthermore, larger quantities
of products are held in stock.

Table 5: Summary results with demand scenarios

Week 1 2 3 4 5 6 7 8 9 10 11 12

Workers 363 425 425 425 425 425 425 425 425 425 425 425

Machines 850 850 850 850 850 850 850 850 850 786.7 711 700.3

Space 230.7 145.9 150.4 126.3 233.2 211.9 306.8 181.7 169.7 256.7 305.7 330

For easier comparison, Table 6 shows the summary results for the original model with the same
capacity limits as have been used wit the robust formulation in Table 5, the total cost is in this
case BC 181,432.

Table 6: Summary results for deterministic model with 1.1 · CAPW

Week 1 2 3 4 5 6 7 8 9 10 11 12

Workers 243 378 370 407 305 418 393 425 425 425 425 425

Machines 609 850 736 770 681 849 799 771.2 840 783.2 721 721.5

Space 152.5 32 0 0 0 0 108.7 21.2 50.6 151.5 245.5 330

Production planning under demand uncertainty c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 29

Robust Optimization with Xpress

4 Robust network design

4.1 Problem description

Suppose we want to design a Telecommunication network. We are given a set of routers, a set of
links, and a set of traffic demands (measured in MB/s) between pairs of routers; for convenience
we can assume each of them sits in a city. We want to find the capacity to be installed on each
link in order to satisfy all traffic demands.

There are several variants of this problem in the scientific literature, and an important subclass
deals with the problem of provisioning virtual private networks, or VPNs for short.

In general, in VPN traffic demand is difficult to predict even in the short term, and hence the
traffic demands are uncertain; however, there exist uncertainty models for such traffic demands.
Here we consider one that has attracted considerable attention and that is realistic enough in
VPNs.

We suppose that there are two parameters s+
i and s−i which estimate the maximum total

outgoing and incoming traffic, respectively, at node i.

The problem is hence that of finding the value of the capacity of every arc of the network (which
is a multiple of a given unit capacity C) so as to accommodate any traffic demand dhk from node
h to node k, subject to uncertainty on these demands modeled by the upper bounds on the
incoming and outgoing traffic for each node of the network.

4.2 Mathematical formulation

Consider a directed graph G with n nodes and m arcs, defined as G = (V, A), where V = {1, . . . , n}
denotes the set of n nodes and A = {(i1, j1), (i2, j2), . . . , (im, jm)} is the set of arcs. The cost of every
unit of capacity (MB/s) installed at each arc (i, j) ∈ A is denoted by aij, and, for each pair of nodes
(h, k) the (unknown) traffic demand from h to k is given by dhk.

Let us introduce a binary flow variable fhk
ij : this variable is one if demand (h, k) is routed through

arc (i, j), zero otherwise, and serves to model the flow of data between each source/destination
pair. We also need to introduce the integer variable xij, which represents the number of channels
of capacity C to be installed in the network.

This problem is a particular case of a multi-commodity network flow problems, with the
important addition of the uncertain in the traffic demands.

Let us first model the uncertainty set: every uncertain demand dhk is nonnegative and the total
demand leaving or entering a node i is bounded from above by a given parameter:

∀k ∈ V,
∑

h∈V :h6=k

dhk ≤ s−k

∀h ∈ V,
∑

k∈V :k 6=h

dhk ≤ s+
h.

Let us consider now the two main classes of constraints for the problem: conservation of flow for
the variables f and the capacity constraints. The former reads as follows: for each node i and each
demand (h, k), if i is an intermediate node for this demand, i.e., it is neither h nor k, then the
incoming flow must be equal to the outgoing flow, therefore

Robust network design c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 30

Robust Optimization with Xpress

∀i, h, k ∈ V : h 6= i 6= k,
∑

j:(i,j)∈A

fhk
ij =

∑
j:(j,i)∈A

fhk
ji .

If i = h, the total balance of flow must be one, hence

∀i, h, k ∈ V : i = h,
∑

j:(i,j)∈A

fhk
ij −

∑
j:(j,i)∈A

fhk
ji = 1.

The case for i = k is redundant and its corresponding constraint can be omitted.

We can now write the capacity constraint: the total traffic on arc (i, j), weighted by the
(unknown) traffic demands, must be less than or equal to the total capacity installed on that arc:

∀(i, j) ∈ A,
∑
h∈V

∑
k∈V :k 6=h

dhkfhk
ij ≤ Cxij.

Finally, the objective function, to be minimized, is

∑
(i,j)∈A

aijxij.

4.3 Implementation

Below is the implementation in Mosel: note that the option ROBUST_OVERLAP_UNCERTAIN is
used since the capacity constraints at each arc use a subset of the uncertain demands.

model "Robust Network"
uses "mmrobust", "mmxprs"

parameters
vpn_data="vpn_data.dat"

end-parameters

declarations
NODES: range ! Set of nodes
ARCCOST: dynamic array(NODES, NODES) of real ! Per-unit cost of arc (i,j)

DEM_IN: array(NODES) of real ! Total INCOMING demand at each node
DEM_OUT: array(NODES) of real ! Total OUTGOING demand at each node

UNITCAP: integer ! Per-unit capacity (independent of arc)

NETCOST: linctr ! Objective function

! Decision variables
flow: dynamic array(NODES, NODES, NODES, NODES) of mpvar

! flow(i,j,h,k) is 1 iff demand h->k uses arc (i,j)
capacity: dynamic array(NODES, NODES) of mpvar ! Capacity to install on arc (i,j)

! Uncertain parameters
demand: array(NODES, NODES) of uncertain ! Uncertain traffic demand

end-declarations

! The following option is necessary to allow uncertain demands to be
! used across multiple capacity constraints

setparam("robust_uncertain_overlap", true)

! Set verbosity level

Robust network design c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 31

Robust Optimization with Xpress

setparam("xprs_verbose", true)

!**** Data input ****

initializations from vpn_data
NODES ARCCOST
DEM_IN DEM_OUT
UNITCAP

end-initializations

!**** Model formulation ****

forall(i in NODES, j in NODES, h in NODES, k in NODES |
exists(ARCCOST(i,j)) and ARCCOST(i,j) > 0 and h <> k) do

create(flow(i,j,h,k))
flow(i,j,h,k) is_binary

end-do

forall(i in NODES, j in NODES | exists(ARCCOST(i,j)) and ARCCOST(i,j) > 0) do
create(capacity(i,j))
capacity(i,j) is_integer

end-do

! Flow balance at intermediate nodes for each demand(h,k)
forall(i in NODES, h in NODES, k in NODES | i <> h and i <> k and k <> h)
sum(j in NODES | exists(flow(i,j,h,k))) flow(i,j,h,k) -
sum(j in NODES | exists(flow(j,i,h,k))) flow(j,i,h,k) = 0

! Flow balance at source nodes (unnecessary for sink nodes)
forall(i in NODES, h=i, k in NODES | k <> h)
sum(j in NODES | exists(flow(i,j,h,k))) flow(i,j,h,k) -
sum(j in NODES | exists(flow(j,i,h,k))) flow(j,i,h,k) = 1

! Capacity (robust) constraint

forall(i in NODES, j in NODES | exists(ARCCOST(i,j)) and ARCCOST(i,j) > 0)
sum(h in NODES, k in NODES | h <> k) demand(h,k) * flow(i,j,h,k) <=

UNITCAP * capacity(i,j)

! Uncertainty set: all demands are nonnegative and constrained by
! total outgoing and incoming demand

forall(h in NODES, k in NODES | h <> k) demand(h,k) >= 0

forall(h in NODES) sum(k in NODES | h <> k) demand(h,k) <= DEM_OUT(h)
forall(h in NODES) sum(k in NODES | h <> k) demand(k,h) <= DEM_IN(h)

! Shortest path length
NetCost := sum(i in NODES, j in NODES | exists(ARCCOST(i,j)) and ARCCOST(i,j) > 0)
ARCCOST(i,j) * capacity(i,j)

!**** Solving ****

minimize(NetCost)

declarations
curNode: integer ! Local variable used in following the path of each demand

end-declarations

! Printing capacities
writeln("Robust solution has total cost ", getobjval)
forall(i in NODES, j in NODES | exists(capacity(i,j)) and capacity(i,j).sol > 0)
writeln("arc ", i, " -- ", j, ": ", capacity(i,j).sol, " units")

writeln("Paths:")

forall(h in NODES, k in NODES | h <> k) do

Robust network design c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 32

Robust Optimization with Xpress

write("Demand ", h, " --> ", k, ": ")
curNode := h
write(h)
while(curNode <> k) do

forall(j in NODES | flow(curNode, j, h, k).sol > 0.5) do
write(" -- ", j)
curNode := j

end-do
end-do
writeln("")

end-do

end-model

4.4 Input Data

Consider the network depicted in Figure 5, where each link represents two arcs in opposite
directions. Table 7 below reports the parameters specified in the data file vpn_data.dat
describing the uncertainty set, i.e., the maximum incoming and outgoing traffic demands for
each node of the network.

1

2

3

5

6

4

Figure 5: Network topology

Table 7: Maximum incoming/outgoing demand

Node Incoming Outgoing

1 120 105

2 34 95

3 35 82

4 101 102

5 78 76

6 75 140

Table 8 describes instead the arc cost for every arc (i, j) used in the network (a “–” means that no
connection exists).

4.5 Results

For the example provided in vpn_data.dat, which describes a network of six nodes and 18 arcs,
we obtain a design of total cost 566. Table 9 reports the number of units of capacity to be

Robust network design c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 33

Robust Optimization with Xpress

Table 8: Arc costs

i/j 1 2 3 4 5 6

1 – 10 9 12 – –

2 8 – 10 – 12 –

3 10 7 – – 9 –

4 10 – – – 12 5

5 – 9 8 11 – 12

6 – – – 10 9 –

installed on each arc, while Table 10 describes the path followed by each demand from source to
destination.

Table 9: Optimal arc capacity

i/j 1 2 3 4 5 6

1 – 2 2 13 – –

2 5 – 0 – 0 –

3 5 0 – – 0 –

4 10 – – – 4 4

5 – 0 0 4 – 0

6 – – – 7 0 –

Table 10: Optimal routes

Source Destination Path Source Destination Path

1 2 1→2 4 1 4→1

1 3 1→3 4 2 4→1→2

1 4 1→4 4 3 4→1→3

1 5 1→4→5 4 5 4→5

1 6 1→4→6 4 6 4→6

2 1 2→1 5 1 5→4→1

2 3 2→1→3 5 2 5→4→1→2

2 4 2→1→4 5 3 5→4→1→3

2 5 2→1→4→5 5 4 5→4

2 6 2→1→4→6 5 6 5→4→6

3 1 3→1 6 1 6→4→1

3 2 3→1→2 6 2 6→4→1→2

3 4 3→1→4 6 3 6→4→1→3

3 5 3→1→4→5 6 4 6→4

3 6 3→1→4→6 6 5 6→4→5

Robust network design c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 34

Robust Optimization with Xpress

5 Robust portfolio optimization

In this section, we present a robust optimization formulation of the single period portfolio
selection problem. In order to compare the results from the robust optimization, we also show
how to quantify the robustness of a solution using Monte-Carlo simulation.

5.1 Problem description

The single-period portfolio selection problem is about selecting assets from a given list in order to
create a portfolio that has the greatest expected value. The assets are bought at the market price
and their value is subject to variation. The investment budget is fixed, and each selected asset is
bought using a percentage of the available budget.

The market price for each asset is known at the time of buying and corresponds to the payment
to be made by the trader to buy one unit. The future asset value is not known, but we assume
the distribution characteristics of the random variable is known.

The trader is risk averse and wants to have some guarantees about the worst case value of the
portfolio. She considers that in the worst case the downward variation of an asset value reaches
1.5 times the variance of the asset. In other words, the trader assumes it is very unlikely that the
value of an asset decreases by more than 1.5 times its variance.

Example: Let’s assume that asset #20 has a market price of 100$ and its variability is +/- 10$. Then
the considered worst case value of the asset is 85$.

In this context, the objective of the trader is to maximize the expected value of her portfolio, but
without taking too much risk. A conservative trader would definitely spend all her budget in the
asset with the highest worst case value in order to be highly protected against the worst possible
outcome. Unfortunately, this strategy would dramatically reduce the expected value of the
portfolio. Another extreme policy would be an opportunistic trader who spends all her budget in
the asset with the highest expected value, without paying much attention to the worst case
realization.

Both approaches are extreme and do not take into account the fact that it is quite unlikely to see
all asset values going down (or going up) to the same degree. In practice traders often aim for
portfolios with a guaranteed probability of having a value greater than a minimum target value.
This is also known as chance constrained optimization. In the ’Results’ section (5.4) we will show
how robust optimization can be used to provide solutions with a large expected value without
sacrificing protection against worst case realization.

5.2 Mathematical formulation

The set S contains the available assets, and the index s ∈ S represents an asset from this set. The
market price of the asset s is noted PRICEs, and its variability range is given by VARs.

For each asset s ∈ S, the variable xs represents the fraction of the budget spent to buy asset s. The
variable w is used to represent the worst case value of the portfolio. The variable devs describes
the possible variation of the value of the asset s.

The value N describes the worst case the trader will consider and corresponds to the maximum
decrease of the asset value expressed as a multiple of its standard deviation.

Robust portfolio optimization c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 35

Robust Optimization with Xpress

5.2.1 Highest protection

A conservative trader will want to maximize the worst case value of her portfolio. If she wants to
get the best protection against worst case realization, then she will try to maximize the worst
case value of her portfolio. In our example, this worst case realizes when the value of every asset
decreases by N times its standard deviation.

max w

s.t. w ≤
∑
s∈S

(PRICEs + N · devs) · xs (with devs = −VARs)∑
s∈S

xs = 1

0 ≤ xs ≤ 1

5.2.2 Budgeted protection

As we will see in the discussion of the results (Section 5.4), achieving a high protection against
worst case realization incurs an important loss of value in the average case. And hence, this
strategy may not be such a clever choice because average cases are more likely to happen. The
trader therefore might want to improuve her model by adding a control parameter to limit the
protection level.

Let k be the percentage value representing the protection level, and G the overall variation
budget as defined by the following formula.

G = k
∑
s∈S

VAR2
s

The ellipsoidal uncertainty set
The possible asset value decrease is controlled by the uncertainty set U(G) that is defined as
follows:

U(G) = {e :
∑
s∈S

VARs · e2
s ≤ G}

Robust constraints
The resulting robust optimization problem can then be stated as:

max w

s.t. w ≤
∑
s∈S

(PRICEs + VARs · es) · xs (∀e ∈ U(G))

∑
s∈S

xs = 1

0 ≤ xs ≤ 1

5.3 Implementation

The following Mosel model implements the mathematical model from the previous section.
Notice how the ellipsoid uncertainty set is added to the original problem to create a robust

Robust portfolio optimization c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 36

Robust Optimization with Xpress

optimization problem.

Also, take a look at how the Monte-Carlo simulation method is applied to quantify the quality of
the solution: in NMC = 5000 iterations we draw random values for the expected value of every
asset by applying a normal distribution centered around its price (mean value) and using its
known variance. We count the occurrence of objective function values (or more precisely, which
value range the resulting solution value belongs to) to determine the probabilities of different
solution qualities. This method is particularly helpful to gain some insight about the solution
quality when it is difficult to determine the exact shape of the distribution function of a random
variable.

model "Robust portfolio optimization"
uses "mmrobust", "random"

parameters
ZEROTOL=1e-6
SEED=12345

end-parameters

declarations
Problems: set of mpproblem
ProtectLevel: set of real

mp_problemA: mpproblem ! Worst case optimization
mp_problemB: array(ProtectLevel) of mpproblem ! Robust optimization
NSHARES = 25 ! Max number of shares
Shares = 1..NSHARES ! Set of shares

PRICE: array(Shares) of real ! Estimated return in investment
VAR: array(Shares) of real ! Uncertainty measure (deviation) per SHARE

expReturn: mpvar ! Expected portfolio value
wstReturn: mpvar ! Worst case portfolio value
frac: array(Shares) of mpvar ! Fraction of capital used per share
frac_sol: array(Shares,Problems) of real
obj: mpvar

e: array(Shares) of uncertain ! Deviation of share values

N=1.5 ! Worst case metric
end-declarations

!***************************Subroutines***************************
!**** Create the nominal model ****
procedure create_nominalmodel
! Nominal model
expReturn = (sum(s in Shares) PRICE(s)*frac(s))
wstReturn = sum(s in Shares) (PRICE(s) - N*VAR(s))*frac(s)

! Spend all the budget
sum(s in Shares) frac(s) = 1

end-procedure

!**** Optimize for the worst case realization ****
procedure solve_det
obj = wstReturn
maximize(obj)

end-procedure

!**** Optimize for a given protection level ****
procedure solve_rob(k: real)
! The value variation domain
G := k*sum(s in Shares) VAR(s)^2 + ZEROTOL
sum(s in Shares) (VAR(s)*e(s))^2 <= G

Robust portfolio optimization c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 37

Robust Optimization with Xpress

! The robust constraint
obj <= sum(s in Shares) (PRICE(s) + N*VAR(s)*e(s))*frac(s)

maximize(obj)
end-procedure

!***************************Main model***************************
!**** Input data generation ****
setrandseed(12345)
forall(s in Shares | s<>NSHARES) do
PRICE(s) := round(30+s*4+random*(2+s))
VAR(s) := round((PRICE(s)/4)*random)

end-do
PRICE(NSHARES) := round(1.01*(max(s in Shares | s<>NSHARES) PRICE(s)))
VAR(NSHARES) := round(PRICE(NSHARES)*0.99/N)

writeln("Shares | Mean | S.Dev. | Worst value")
forall(s in Shares)
writeln(strfmt(s,6), " |", strfmt(PRICE(s),5), " |", strfmt(VAR(s),7),
" |", strfmt(PRICE(s)-N*VAR(s),6,0))

write("\n\n")

!**** Optimize the worst case ****
with mp_problemA do
create_nominalmodel
solve_det
forall(s in Shares) frac_sol(s,mp_problemA) := frac(s).sol*100

end-do

!**** Optimize the ’budgeted’ worst case ****
Ks := [0, ! No variation on average

0.001, ! +/- 2% variation on the list
0.01, ! +/- 5% variation on the list
0.05] ! +/- 15% variation on the list

forall(k in Ks) do
create(mp_problemB(k))
with mp_problemB(k) do
create_nominalmodel
solve_rob(k)
forall(s in Shares) frac_sol(s,mp_problemB(k)) := frac(s).sol*100

end-do
end-do

!**** Print results ****
write("\n\nShares | Wst price | Price | A |")
forall(k in Ks) write(" k=", strfmt(k*100,2,1), "% |") ; writeln
forall(s in Shares) do
write(strfmt(s,6), " |", strfmt(PRICE(s)-N*VAR(s),10,0), " |",
strfmt(PRICE(s),6), " | ")

forall(mp in Problems) do
if (frac_sol(s,mp)>1) then
write(strfmt(frac_sol(s,mp),5,0), "% | ")

else
write(" | ")

end-if
end-do
writeln

end-do

!**** Simulate results (Monte-Carlo simulation) ****
forall(mp in Problems) do
NMC:=5000
expRev(mp) := 0.0 ; wstRev(mp) := 0.0
cntBelow110(mp) := 0.0 ; cntAbove130(mp) := 0.0
c := 0.0
forall(i in 1..NMC, c as counter) do
totalVal := 0.0

Robust portfolio optimization c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 38

Robust Optimization with Xpress

forall(s in Shares | frac_sol(s,mp)>0) do
v := maxlist(normal(PRICE(s),VAR(s)),0)
totalVal += v*frac_sol(s,mp)/100
expRev(mp) += v*frac_sol(s,mp)/100
while(v >PRICE(s)-N*VAR(s)) v := maxlist(normal(PRICE(s),VAR(s)),0)
wstRev(mp) += v*frac_sol(s,mp)/100

end-do
if (totalVal<110) then cntBelow110(mp) += 1
elif (totalVal>130) then cntAbove130(mp) += 1
end-if

end-do
expRev(mp) := expRev(mp) / c
wstRev(mp) := wstRev(mp) / c
cntBelow110(mp) := cntBelow110(mp) / c
cntAbove130(mp) := cntAbove130(mp) / c

end-do

!**** Print simulation results ****
write("\n | A |")
forall(k in Ks) write(" k=", strfmt(k*100,2,1), "% |")
write("\n Expected value |")
forall(mp in Problems) write(strfmt(expRev(mp),7,1), " |")
write("\n Worst case value |")
forall(mp in Problems) write(strfmt(wstRev(mp),7,1), " |")
write("\n\n P (value<110) |")
forall(mp in Problems) write(strfmt(cntBelow110(mp),7,2) , " |")
write("\n P (110<=value<130) |")
forall(mp in Problems) write(strfmt(1-cntBelow110(mp)-cntAbove130(mp),7,2), " |")
write("\n P (value>130) |")
forall(mp in Problems) write(strfmt(cntAbove130(mp),7,2), " |")
writeln

end-model

5.4 Results

In order to understand how the uncertainty set impacts the solution we will solve the porfolio
allocation problem for various protection levels k and compare the suggestions against the
conservative approach.

The trader knows that she can expect a portfolio value in the range of 110 to 130. She therefore
wishes to calculate for each of the three ranges 0–110, 110–130, 130–infinity the probability that
the value of the portfolio will belong to this range.

5.4.1 Input Data

The table 11 shows the asset mean value which is also the market price (Mean), the standard
variation of the value (S. Dev), and the considered worst case value with N = 1. 5 (Worst value).

A quick glance at the input data reveals that asset #22 would the best choice for the conservative
trader because it has the highest worst case value, whereas asset #25 would be the preferred
investment for an optimistic trader since it has the largest best case value for its expected value.

Robust portfolio optimization c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 39

Robust Optimization with Xpress

Table 11: Asset value distribution

Shares Mean S.Dev. Worst value

1 35 2 32

2 42 8 30

3 47 11 31

4 49 3 45

5 51 12 33

6 60 1 59

7 61 8 49

8 64 16 40

9 72 10 57

10 81 12 63

11 85 6 76

12 83 5 76

13 83 15 61

14 91 2 88

15 102 8 90

16 97 1 96

17 109 18 82

18 107 12 89

19 126 30 81

20 132 19 104

21 128 11 112

22 124 4 118

23 136 22 103

24 130 12 112

25 137 90 2

5.4.2 Analysis

In order to understand how the robust optimization behaves compared to the nominal problem,
we solve the nominal problem (A) and 4 robust optimization problems parameterized by the
protection level k. When the protection level is k=0.0, then the deviation budget is also zero,
hence the solution is a very optimistic one.

In a second step, we use a Monte-Carlo method to simulate the actual value of the assets selected
by these 5 solutions and calculate the probability with which the portfolio value lies in one of the
three value ranges that have previously been determined by the trader.

Table 12 presents the portfolio selection suggestion for each of these problems. For the sake of
simplicity we list only those assets that are selected in at least one solution. The conservative
solution (A) is to allocate all budget to the asset with highest worst case value. The optimistic
solution (k=0.0) is to allocate the whole budget to the asset with the highest expected value.
With an increasing protection level the suggested solutions improve the balance between assets
with high largest expected value and high worst case.

Table 13 presents the results of the Monte-Carlo simulation of the portfolio value for each
portfolio selection suggestion. The conservative solution (A) is the one with highest worst case
value, and as expected the probability of this portfolio’s value to drop under 110 is zero.
However, from the trader’s point of view this may not be judged a good solution as it is very
unlikely that the portfolio value will rise beyond 130.

Robust portfolio optimization c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 40

Robust Optimization with Xpress

Table 12: Results of the parameterized robust optimization

Shares Wst price Price A k=0.0% k=0.1% k=1.0% k=5.0%

19 81 126 9%

20 104 132 18% 16%

21 112 128 6% 12%

22 118 124 100% 7%

23 103 136 43% 31% 20%

24 112 130 12% 14%

25 2 137 100% 57% 34% 21%

The optimistic solution has the largest expected value, but also a substantial risk (38%) of
achieving a portfolio value that lies below the trader’s target of 110. It is also important to notice
the high volatility of the portfolio value.

The behavior of the other solutions (k > 0) shows that as the deviation budget increases, the
worst case value of the portfolio equally increases while the expected value decreases. The
volatility of the distribution of the values against the three ranges tends to reduce.

Table 13: Results of the Monte-Carlo simulation

A k=0.0% k=0.1% k=1.0% k=5.0%

Expected value 124.0 139.5 138.3 135.5 133.1

Worst case value 116.3 0.1 40.3 64.6 76.3

P (value ≤ 110) 0.00 0.38 0.30 0.22 0.13

P (110 ≤ value ≤ 130) 0.93 0.08 0.14 0.21 0.33

P (value ≤ 130) 0.07 0.53 0.56 0.57 0.54

The solution with k = 5% seems to present a good balance between expected value and worst
case value. Moreover, this solution has a great chance (87%) of producing a portfolio value that is
greater than 110.

5.5 References

The presented problem is inspired by the Single-Period Portfolio selection problem described in
[BTEGN09].

Robust portfolio optimization c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 41

Robust Optimization with Xpress

6 Robust unit commitment

6.1 Problem description

The unit commitment problem consists in scheduling the power generation level of a set of
generators to meet the power demand. In order for a power system to operate safely, the power
generation must equal the demand at any time (the so-called power balance constraints) Failing
to satisfy this requirement may result in serious issues, possibly causing a black out.

The power generation level of a power generating unit depends on its commitment. When the
unit is switched off, no power is produced, only when it has been started the unit can generate
electricity. Due to technical constraints, the power generation level must lie within a band
describing safe operation. For the vast majority of unit types, the minimum power generation
level is an important parameter when deciding whether to start a particular unit or not.

Another parameter that plays an important role in the decision whether to start a unit is its
startup cost. Units with low startup cost could be started and shut down multiple times during a
planning period, while units with high cost will preferrably be kept running once started.

For the sake of simplicity, other considerations like ramp rate constraints, shutdown costs or the
various reserve types are omitted from the present model.

Example: We shall consider the case of day-head unit commitment scheduling. This operational
planning task consists in determining on a day for the next, the startup and shutdown phases of
the generating units in order to be able to safely satisfy the next day’s power demand. However,
the exact demand is not known for sure at the time of scheduling, and hence it is considered an
uncertain parameter of the optimization problem. Common practice for dealing with this
uncertainty is to commit a larger number of units than strictly required to be sure to have
sufficient upward and downward power generation reserve. In the following we will show how
to apply robust optimization techniques to take into account this uncertainty more efficiently.

We are going to present two robust implementations of the unit commitment problem resulting
in plans for which the unit commitment decisions do not have to be changed in real time. More
precisely, the suggested unit commitment schedules make sure that enough power generation
capacity is available to supply the actual demand without requiring any last minute unit startups
or shutdowns. The first model is based on a scenario uncertainty set, it ensures that the unit
commitment status will not require any modification even if the real power demand is different
from the forecast. In this problem it is assumed that the power demand realization will be similar
to either the forecast or some historical power demand curve. The second model, based on a
cardinality uncertainty set, guarantees that the unit commitment status will not require any
modification even if up to ’k’ generating units are simultaneously forced in outage.

6.1.1 Robust against power demand variation

Typical unit commitment robustness against power demand variation is achieved by adding
constraints to bound the difference between the total power generation and the total available
power generation capacity of running units. This value is known as the upward power
generation level and defines the maximum power demand increase that can be safely supplied
without requiring new unit startup. This empirical value is arbitrarly determined from historical
power demand.

We will see how the robust optimization framework can be used to seamlessly implement similar
constraints by replacing the reserve requirement by a set of robust constraints formed from
historical power demand. These historical data and the power demand forecast are used to
determine the real power demand. This real power demand is modeled with the scenario

Robust unit commitment c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 42

Robust Optimization with Xpress

uncertainty sets. The figure 6 presents the next day’s historical power demand of the last 6 years
alongside with the forecasted power demand.

Year 2009

Year 2010

Year 2011

Year 2012

Year 2013

Year 2014

Forecast

Figure 6: Historical power demand and forecast

6.1.2 Robust against the N − k contingency

Typical unit commitment robustness against unit forced outage is achieved by analysing the
impact of a contingency resulting in loss of k generating units. If the total lost generation is
greater than the upward reserve from the remaining generating units, then the system is at risk
and demand cannot be fully sustained. Running such a simulation is an important task and
provides insights about the security of the power system. Unfortunately, if it can prove the
inability of the schedule to survive k, the model will fail to suggest how to improve the schedule
to satisfy the safety constraint.

A robust optimization formulation can be used to simulate the loss of k running units and to
suggest the startup and shutdown of new units to safely supply the power demand. The
cardinality uncertainty sets will be used to model the outage state of a unit.

6.2 Mathematical formulation

The set Horizon of consecutive time periods describes the planning horizon of the study. Time
periods t ∈ Horizon have different lengths LENt. Each time period t ∈ Horizon is associated with a
power demand DEMt.

The set Units denotes the set of available power generation units. The minimum power
generation level of a unit is PMINu, and its maximum capacity is PMAXu. The startup cost of a
single unit is CSTRu, and the cost of running it at the minimum power generation level is CMINu.
The marginal power production cost above PMINu for each hour is CADDu.

Each unit u is associated with three decision variables. The binary variable startut equals 1 if the
unit u is starting at the beginning of time period t. The binary variable workut equals 1 if the unit
u is up and running during the whole time period t. At last, the variable paddut is set to the
power generation level of the unit u during time period t.

Robust unit commitment c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 43

Robust Optimization with Xpress

6.2.1 Original Unit Commitment Problem

The objective function, to be minimized, is the expected operation cost. The operation cost is
composed of the startup cost and the generation cost. It can be expressed as follows:

∑
u∈Units,t∈Horizon

CSTRu · startut + LENt · (cminuworkut + caddu · paddut)

The startup constraints describe the time period(s) during which the unit is starting. They can
expressed as follows:

startut ≥ workut −workut−1, ∀u ∈ Units, if t > 1

startu1 ≥ worku1 −workuT , ∀u ∈ Units, if t = 0

The maximum power generation level constraints limit the power generation level of a unit.
These constraints are stated as:

≤ (PMAXu − PMINu) ·workut ∀u ∈ Units, t ∈ Horizon

The power balance constraints ensure that the total power production equals the power demand
at any time. They are formulated by these equations:∑

u∈Units

PMINu ·workut + paddut = DEMu, ∀t ∈ Horizon

6.2.2 Load Robust Unit Commitment Problem

The Load Robust Unit Commitment problem extends the Original Unit Commitment problem by
constraining the unit commitment to be safe under power demand variation. Historical power
demands for the last years are known.

The scenario uncertainty set
Let Udem be the set of possible future power demands. Let Years be the set of past years that
should be taken into account, and HDEMyt the demand for the time period t of the year y. Then
the uncertainty set can be expressed as follows:

Udem = {e : ∀t ∈ Horizon,∃y ∈ Years : et = HDEMyt}

Robust constraints ∑
u∈Units

PMAXu ·workut ≥ demt ∀dem ∈ Udem, t ∈ Horizon

The reformulation engine will efficiently handle the resulting, potentially large number of
constraints, even with large sets of historical data.

6.2.3 The N-k Contingency-Constrained Unit Commitment Problem

The N − k Contingency-Constrained Unit Commitment problem extends the Original Unit
Commitment problem as to make sure that the committed power generation units can supply the
load, even if k generators are simultaneously forced in outage. The uncertain eut represents the
forced outage event, and the uncertainty set is the set of units that are in forced outage.

Robust unit commitment c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 44

Robust Optimization with Xpress

The cardinality uncertainty set
Let Uoutage be the set describing groups of combinations of k units in forced outage. This
uncertainty set can be expressed as follows:

Uoutage = {e :
∑

u∈Units

eu ≤ k}

Robust constraints∑
u∈Units

PMAXu ∗workut · (1− eu) ≥ DEMt ∀e ∈ Uout, t ∈ Horizon

6.3 Implementation

6.3.1 The Original Unit Commitment Implementation

The Mosel code printed below implements and solves the original formulation of the unit
commitment problem.

declarations
NT = 7 ! Number of time periods
TIME = 1..NT ! Time periods
PLANTS = 1..4 ! Power generation plant
UNITS: set of string ! Power generation units

LEN, DEM: array(TIME) of integer ! Length and demand of time periods
PMIN,PMAX: array(PLANTS) of integer ! Min. and max output of a generator type
CSTART: array(PLANTS) of integer ! Start-up cost of a generator
CMIN: array(PLANTS) of integer ! Hourly cost of gen. at min. output
CADD: array(PLANTS) of real ! Cost/hour/MW of prod. above min. level
PLANT: array(UNITS) of integer ! Unit generation plant

YEARS: range ! Historical years
HDEM: array(YEARS,TIME) of integer ! Historical demand profiles

start: array(UNITS,TIME) of mpvar ! Is generation unit starting ?
work: array(UNITS,TIME) of mpvar ! Is generation unit up ?
padd: array(UNITS,TIME) of mpvar ! Production above min. output level
end-declarations

initializations from ’a6electr_ro_simple.dat’
LEN DEM PMIN PMAX CSTART CMIN CADD PLANT HDEM
end-initializations

! Create decision variables
forall(u in UNITS, t in TIME) do
start(u,t) is_binary
work(u,t) is_binary
end-do

! Objective function: total daily cost
Cost:= sum(u in UNITS, t in TIME) (CSTART(PLANT(u))*start(u,t) +
LEN(t)*(CMIN(PLANT(u))*work(u,t) + CADD(PLANT(u))*padd(u,t)))

! Number of generators started per period and per type
forall(u in UNITS, t in TIME)
start(u,t) >= work(u,t) - if(t>1, work(u,t-1), work(u,NT))

! Limit on power production range
forall(u in UNITS, t in TIME)
padd(u,t) <= (PMAX(PLANT(u))-PMIN(PLANT(u)))*work(u,t)

Robust unit commitment c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 45

Robust Optimization with Xpress

! Power balance
forall(t in TIME)
sum(u in UNITS) (PMIN(PLANT(u))*work(u,t) + padd(u,t)) = DEM(t)

! Symmetry breaker
forall(t in TIME, p in PLANTS)
forall(u1, u2 in UNITS | PLANT(u1) = PLANT(u2) and u1<u2)
work(u1,t) >= work(u2,t)

!**** Solving and solution reporting ****
! Solve the original problem
minimize(Cost)

writeln("\n=== Nominal case ===\n")
print_solution

! Add robust constraints
robust_demand
! Solve robust the problem
minimize(Cost)

writeln("\n=== Robust against demand variation ===\n")
print_solution

The following output printing routines are invoked from the model shown above:

!**** Print highest loss of load in case of worst case scenario realization
procedure print_risk
write("\n", strfmt("Loss of load",20))
forall(t in TIME) do
s:= sum(u in UNITS) (work(u,t).sol*PMAX(PLANT(u))) ! Total capacity
v:= maxlist(DEM(t), max(y in YEARS) HDEM(y,t)) ! Hist. peak demand
if(s < v) then

write(strfmt(v-s,8))
else

write(strfmt("",8))
end-if

end-do
end-procedure

!**** Solution printing ****
procedure print_solution
writeln("Total cost: ", getobjval)

write(strfmt("Time period ",-20))
ct:=0
forall(t in TIME) do
write(strfmt(ct,5), "-", strfmt(ct+LEN(t),2), "")
ct+=LEN(t)

end-do

write("\n",strfmt("Up Units",-20))
forall(t in TIME) write(strfmt(sum(u in UNITS) work(u,t).sol,8))
write("\n", strfmt("Gen. Pwr.",20))
forall(t in TIME)
write(strfmt(sum(u in UNITS) (work(u,t).sol*PMIN(PLANT(u))+padd(u,t).sol),8))

write("\n", strfmt("Gen. Cap.",20))
forall(t in TIME)
write(strfmt(sum(u in UNITS) (work(u,t).sol*PMAX(PLANT(u))),8))

write("\n", strfmt("Res. Dn",20))
forall(t in TIME) write(strfmt(sum(u in UNITS) (padd(u,t).sol),8))
write("\n", strfmt("Res. Up",20))
forall(t in TIME)
write(strfmt(sum(u in UNITS) work(u,t).sol*PMAX(PLANT(u)) - DEM(t),8))

print_risk

Robust unit commitment c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 46

Robust Optimization with Xpress

writeln
end-procedure

6.3.2 The Load Robust Unit Commitment Implementation

The extension to scenario-based robust optimization is implemented by the following
subroutines.

!**** Helper routine to create scenario uncertain set ****
public procedure makescenario(a:array(r1:range,c1:range) of integer,
u:array(c2:range) of uncertain)
declarations

aa:dynamic array(r0:range,U:set of uncertain) of real
end-declarations
forall(i in r1, j in c1|exists(a(i,j)) and exists(u(j)),n as counter) do

aa(n,u(j)):=a(i,j)
end-do
scenario(aa)

end-procedure

!**** Robust against past scenario ****
public procedure robust_demand
declarations
demand: array(TIME) of uncertain ! Uncertain power demand

end-declarations

! Add uncertainty set (time correlation)
makescenario(HDEM,demand)

! Security reserve upward
forall(t in TIME) sum(u in UNITS) PMAX(PLANT(u))*work(u,t) >= demand(t)

end-procedure

6.3.3 The N-k Contingency-Constrained Unit Commitment Implementation

Replacing the call to the procedure robust_demand by a call to the procedure
robust_contingency printed below will turn the problem formulation into a N-k
contingency-constrained unit commitment model.

!**** Ensure enough power production capacity allows to
!**** satisfy load even if ’k’ units are forced in outage.
procedure robust_contingency(k: integer)
declarations
outage: array(UNITS,TIME) of uncertain ! uncertain event

end-declarations

forall(t in TIME, u in UNITS) outage(u,t) >= 0
! In forced outage, loosing 100% of
! the unit generation capacity
forall(t in TIME, u in UNITS) outage(u,t) <= 1

! forall(t in TIME) sum(u in UNITS) outage(u,t) <= k
forall(t in TIME) cardinality(union(u in UNITS) {outage(u,t)}, k)

forall(t in TIME) sum(u in UNITS) PMAX(PLANT(u))*work(u,t) -
sum(u in UNITS) PMAX(PLANT(u))*work(u,t)*outage(u,t) >= DEM(t)

!forall(t in TIME)
! sum(u in UNITS) PMAX(PLANT(u))*work(u,t)*(1 - outage(u,t)) >= DEM(t)

end-procedure

Robust unit commitment c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 47

Robust Optimization with Xpress

6.4 Results

Let us now take a look at the results generated by the three models. The Original Unit
Commitment Problem is used as the baseline scenario and the two robust versions are compared
against it.

For all three model formulations, a feasible unit commitment which satisfies the technical
constraints and supplies the load is found.

The characteristics of the power generation units used in the test instances (number of units per
type, minimum and maximum generation levels, fixed cost when running at minimum level,
variable cost between minimum and maximum generation levels, start-up cost) are summarized
in Table 14.

Table 14: Description of power generators

Unit type Number Pmin Pmax Fix cost Add. MW cost Start-up cost

1 10 750 1750 2250 2.7 5000

2 4 1000 1500 1800 2.2 1600

3 8 1200 2000 3750 1.8 2400

4 3 1800 3500 4800 3.8 1200

Table 15 presents results of the nominal optimization problem. For each time period, the number
of started units is presented (Up Units), along with the generation power (Gen. Pwr.). The
generation capacity (Gen. Cap.) is the total maximum power generation available from the
started units. The columns reserve down (Res. Dn.) and reserve up (Res. Up) respectively show the
maximum load decrease or load increase that can be safely supported without requiring startup
or shutdown of any units.

For example, during the first periods (0-6) the load can increase from 12000 kWh (power demand
forecast) to 13250 kWh (power demand forecast + reserve up) without starting up new units.

The last two lines present the maximum loss-of-load in case the worst scenario realizes. For the
demand variation, the worst scenario is the realization of the load profile that requires the
highest power generation increase. For the contingency planning, the worst scenario occurs
when k ’critical’ units are forced in outage. The criticality of a unit depends on its power
generation level and total reserve. A unit without reserve up is critical, as is a unit supplying a
very large share of the total load.

Table 15: Nominal case (Total cost: 1.40679 Million)

0-6 6-9 9-12 12-14 14-18 18-22 22-24

Up units 8 18 15 20 15 17 11

Gen. Pwr. 12000 32000 25000 36000 25000 30000 18000

Gen. Cap. 13250 37750 27250 44750 27250 34250 19250

Res. Dn 3850 10050 8450 10450 8450 9850 6250

Res. Up 1250 5750 2250 8750 2250 4250 1250

Loss of load

Demand variation 0 1395 1491 0 2592 0 0

2 Contingencies 2750 1250 1750 0 1750 2750 2750

Robust unit commitment c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 48

Robust Optimization with Xpress

Table 16: Robust against demand variation (Total cost: 1.409 Million)

0-6 6-9 9-12 12-14 14-18 18-22 22-24

Up Units 8 18 15 20 15 17 11

Gen. Pwr. 12000 32000 25000 36000 25000 30000 18000

Gen. Cap. 13250 39250 28750 44750 30250 37250 19250

Res. Dn 3850 9450 7850 10450 7250 8650 6250

Res. Up 1250 7250 3750 8750 5250 7250 1250

Loss of load 0 0 0 0 0 0 0

If the nominal case is applied, then in case of demand variation, there is a risk of not supplying
1395 kWh of demand during the morning peak. Common sense would be to start up a new unit
in order to cover the risk for all time periods when there is a risk of loss of load. However, the
results from the robust formulation for the demand variation problem presented in Table 16
show that it is possible to overcome the risk merely by changing the type of committed units.

Table 17: Robust against 2 contingencies (Total cost: 1.420 Million)

0-6 6-9 9-12 12-14 14-18 18-22 22-24

Up Units 9 18 16 20 15 17 11

Gen. Pwr. 12000 32000 25000 36000 25000 30000 18000

Gen. Cap. 19750 39250 32250 44750 33250 38750 25250

Res. Dn 850 9450 6050 10450 6050 8050 3850

Res. Up 850 9450 6050 10450 6050 8050 3850

Loss of load 0 0 0 0 0 0 0

The loss of load for the 2 contingencies case highlights that there is a risk of not being able to
supply 2750 kWh during the initial periods. It means that about 20% of the total demand will not
be covered. Indeed there is only 1250 kWh of upward reserve available, which means that even if
a single unit running at full capacity is lost (1500 kWh) then the power demand cannot be
supplied. Like in the previous case, the common sense conclusion would be to start up new units.
However, the results from the robust formulation for the 2 contingencies problem presented in
Table 17 show that it is possible to find a unit commitment schedule without risking loads
disconnection and without committing too many new units (and hence incurring higher startup
costs).

6.5 References

The presented nominal unit commitment model is based on a problem described in the book
’Applications of optimization with Xpress-MP’ [GHPS02].

Robust unit commitment c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 49

Robust Optimization with Xpress

7 Production planning under energy supply uncertainty

7.1 Problem description

A company produces liquid nitrogen and liquid oxygen (we will call them LIN and LOX in the
remainder) and needs to plan production for the next N periods, identified as shifts of 8 hours
each. Although the resource procurement is rather trivial (these two elements compose most of
the troposphere), the process of obtaining these two liquid gases requires a vast amount of
electricity, both for refrigerating the stored liquid gases and for powering the plant.

Given that the energy cost is the largest component of the production cost, power suppliers offer
several types of energy supply contracts; one of these is known as Interruptible Load Contracts (or
ILC for short) and allows the power supplier to interrupt, with a short notice (a few minutes), the
provision of electricity to a large customer such as a plant for a limited period of time; most likely
the power supplier will take advantage of this in times of high electricity demand, such as hot
summer days. However, the ILC requires that there be no more than K interruptions throughout
the planning horizon.

We are dealing therefore with a production planning problem under uncertainty in the power
supply. We are given in input the production and inventory cost, the maximum production, the
inventory capacity, the initial inventory, the demand in LIN and LOX for each period, and the
maximum number K of interruptions. The problem consists of finding the amount of LIN and LOX
to be produced every day so that the demands are satisfied irrespective of the interruptions that
may occur within the clause of the contract.

This optimization problem requires the application of Robust Optimization for one reason among
several: among the customers of this company there are hospitals, for which the fulfilment of the
demand of LOX is imperative.

7.2 Mathematical formulation

We are given the set of gases G = {lin, lox} and the set of time periods T = {1, 2, . . . , N}, the
maximum production level Plin and Plox for each period and the inventory capacity Slin and Slox for
each gas. The demand is given by the parameter demtg for t ∈ T, g ∈ G.

The uncertainty set is defined by every vector of interruptions (ξ)i=1..n such that ξi ∈ [0, 1] and not
more than K of its elements are positive:

n∑
i=1

ξi ≤ K.

Let us define the variables prodtg and invtg representing the production and inventory level,
respectively, at period t for gas g. Without uncertainty in the input data, the model would have
simple of constraints: bounds on the variables and fixing of the initial inventory level:

0 ≤ prodtg ≤ Pg ∀g,∀t ∈ {1, 2, . . . , N}

0 ≤ invtg ≤ Sg ∀g,∀t ∈ {1, 2, . . . , N}

0 ≤ inv0g = Ig ∀g;

Production planning under energy supply uncertainty c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 50

Robust Optimization with Xpress

and the production planning constraint would consist of a mass conservation constraint for every
gas g and time period t:

invt−1,g + prodtg = invtg + demtg ∀t ∈ T, g ∈ G.

The modeling is more involved for this case. A first attempt would be to write the robust
constraint by multiplying the production variable by (1− ξt), so that the actual production at time
period t is zero if ξt = 1:

invt−1,g + (1− ξt)prodtg = invtg + demtg ∀t ∈ T, g ∈ G.

However, this would yield no feasible solution: for each robust constraint related to production
at time period t the uncertain ξt would be set to one, and no production would occur. We need
to aggregate the production constraints in such a way that the balance between production and
demand yields an inventory that is nonnegative at every time period. The above constraint is
replaced by the following one:

inv0,g + sumτ∈T :τ≤t((1− ξτ)prodτg − demτg) ≥ 0 ∀t ∈ T, g ∈ G.

This robust constraint considers uncertainty in the interruptions but allows for a production plan
that satisfies all demands even with K interruptions. In order to deal with contour conditions and
take into account the initial inventory, we add a slight modification to the uncertainty set and
require that no interruption happens at time period 1:

ξ1 = 0.

Finally, the robust value of the inventory must take into account the situation in which, after
planning the production, no interruption actually occurs: this is simply enforced by bounding the
inventory at every time period as the sum of all accumulated production discounted by the
accumulated demand:

invtg ≥ inv0,g + sumτ∈T :τ≤t(prodτg − demτg) ∀t ∈ T, g ∈ G.

7.3 Implementation

Below is the implementation in Mosel: note that the option ROBUST_OVERLAP_UNCERTAIN is
again used since the nonnegative-inventory constraints use the same set of uncertains multiple
times.

model robust_prodplan

uses "mmrobust"

parameters
plan_data = "prodplan_robust.dat"

end-parameters

declarations
NDAYS: integer ! Planning horizon
PERDAY: integer ! Number of periods per day
NPERIODS: integer ! Total number of periods

PERIODS,PERIODS0: range ! Time periods
GASES: set of string ! Set of products

Production planning under energy supply uncertainty c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 51

Robust Optimization with Xpress

PROD_CAP: array(GASES) of real ! Production capacity every day
INV_CAP: array(GASES) of real ! Inventory capacity
INV_0: array(GASES) of real ! Initial inventory

PROD_COST: real ! Production cost
INV_COST: real ! Inventory cost

DEMAND: array (PERIODS, GASES) of real ! Demand of each gas every day

MAX_NINTERR: integer ! Maximum number of interruption
! (as per contract)

end-declarations

!**** Initialize data ****
initializations from plan_data
NDAYS PERDAY
PROD_CAP INV_CAP
PROD_COST INV_COST INV_0
DEMAND
MAX_NINTERR

end-initializations

NPERIODS := NDAYS * PERDAY
PERIODS0 := 0..NPERIODS

!**** Problem formulation ****
declarations
produce: array (PERIODS, GASES) of mpvar ! Production every day
inventory: array (PERIODS0, GASES) of mpvar ! Inventory level every day,

! including initial level

interruption: array (PERIODS) of uncertain ! Is power cut at this time?
end-declarations

!**** Constraints ****

! Start inventory
forall(g in GASES)
inventory (0,g) = INV_0 (g)

! Inventory balance
forall(t in PERIODS, g in GASES) do

inventory(0,g) + sum(tp in PERIODS | tp <= t)
((1 - interruption(tp)) * produce(tp,g) - DEMAND(tp,g)) >= 0

inventory (0,g) + sum (tp in PERIODS | tp <= t)
(produce(tp,g) - DEMAND(tp,g)) <= inventory(t,g)

inventory(t,g) <= INV_CAP(g)
produce(t,g) <= PROD_CAP(g)

end-do

! Interruptions of production
forall (t in PERIODS) do
interruption (t) <= 1
interruption (t) >= 0

end-do

sum(t in PERIODS) interruption (t) <= MAX_NINTERR
interruption(1) = 0

!**** Solving ****
setparam("robust_uncertain_overlap", true)

! Set verbosity level

Production planning under energy supply uncertainty c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 52

Robust Optimization with Xpress

setparam("xprs_verbose", true)

! Objective function: total cost of production and storage
minimize(sum (t in PERIODS, g in GASES)

(PROD_COST * produce (t,g) + INV_COST * inventory(t,g)))

!**** Soution reporting ****
writeln("\nNumber of interruptions: ", MAX_NINTERR)
writeln("\nOptimal solution has cost ", getobjval)

COLWIDTH := 6

forall(g in GASES) do

writeln("\nProduction of ", g)

write(strfmt ("Time",-COLWIDTH))
forall(t in PERIODS0) write (strfmt(t,COLWIDTH))

write("\n", strfmt("Dem",-2*COLWIDTH))
forall(t in PERIODS) write(strfmt(DEMAND(t,g),COLWIDTH,1))

write("\n", strfmt("Prod",-2*COLWIDTH))
forall(t in PERIODS) write(strfmt (produce(t,g).sol,COLWIDTH,1))

write("\n", strfmt("Inv*",-COLWIDTH))
forall(t in PERIODS0)

write (strfmt(inventory(0,g).sol +
sum (tp in PERIODS | tp <= t)
(produce(tp,g).sol - DEMAND(tp,g)),COLWIDTH,1))

writeln("")

end-do

end-model

7.4 Input Data

For this example, we consider a simple instance of the problem where the planning has a horizon
of five days and three periods per day. The cost of production and inventory is 4 and 3,
respectively, and the ILC contract allows for four interruptions. Table 18 below shows the
production and inventory capacity and the initial inventory level for both gases.

Table 18: Production and inventory capacity

Gas Prod. capacity Inv. capacity Initial inv.

LIN 29 60 20

LOX 5.5 27 20

Table 19 below lists the demand for each gas over all 15 periods.

Table 19: Customer demand

Gas/Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LIN 6 14 10 8 11 15 10 9 10 9 10 12 11 15 9

LOX 2 5 3 4 8 4 8 7 5 4 3 3 5 9 7

7.5 Results

The optimal solution of this problem has cost 4727.17. Tables 20 and 21 give the optimal levels of

Production planning under energy supply uncertainty c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 53

Robust Optimization with Xpress

production required in order to satisfy the demands regardless of when the interruptions occur, if
ever. Note that the production levels are higher at the beginning and then, for liquid oxygen,
they equal the demand. This depends on the fact that production at the initial time periods must
assume for worst-case scenarios such as K = 4 consecutive interruptions early in the planning
horizon. The inventory levels equal the balance between demand and production as they must
account for the event that no interruption occurs.

Table 20: Production of LIN

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Dem 6 14 10 8 11 15 10 9 10 9 10 12 11 15 9

Prod 29 15 15 15 15 15 10 9 10 9 10 12 11 15 9

Inv* 43 44 49 56 60 60 60 60 60 60 60 60 60 60 60

Table 21: Production of LOX

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Dem 2 5 3 4 8 4 8 7 5 4 3 3 5 9 7

Prod 5.5 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5 5.2 5.2 5.2 5.2 5.2 5.2

Inv* 23.5 23.7 25.8 27 24.2 25.3 22.5 20.7 20.7 21.8 24 26.2 26.3 22.5 20.7

Finally, note that this is the result of the optimization problem solved at the beginning of the
time period. Using a rolling horizon approach, i.e., re-solving the model at every time period
while taking into account the interruptions that already occurred, would allow us to obtain a less
expensive production plan although the planned production levels might have to change.

7.6 References

This example is a simplified version of a real-world application that has been documented in
[LBS13].

Bibliography

[BS04] D. Bertsimas and M. Sim. The price of robustness. Operations research, 52(1):35–53, 2004.

[BTEGN09] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton Series in Applied Mathematics,
2009.

[GHPS02] C. Guéret, S. Heipcke, C. Prins, and M. Sevaux. Applications of Optimization with Xpress-MP. Dash
Optimization, Blisworth, UK, 2002.

[LBS13] C. Latifoglu, P. Belotti, and L.V. Snyder. Models for production planning under power interruptions. Naval
Research Logistics (NRL), 60(5):413–431, 2013.

Production planning under energy supply uncertainty c©Copyright 2014 Fair Isaac Corporation. All rights reserved. page 54

	Introduction
	Uncertains and robust constraints
	Types of robust constraints
	Simple bounds on the uncertain coefficients
	Linear constraints on the uncertainty sets
	Ellipsoidal uncertainty sets
	Equality constraints and uncertain values with no uncertain constraints
	Mixing uncertainty sets and types
	Cardinality restrictions for uncertains
	Using historical data - scenarios
	Uncertainty in the objective

	Nominal values: centered and uncentered uncertainty
	The price of robustness
	Working with nominal values
	Using nominal values to shift the uncertainty set
	Using nominal valued uncertains as coefficients

	Examples of robust models

	Robust shortest path
	Problem description
	Mathematical formulation
	Shortest path problem
	Robust optimization problem

	Implementation
	Results

	Production planning under demand uncertainty
	Problem description
	Mathematical formulation
	Multi-period, multi-item production planning problem
	Robust optimization problem

	Implementation
	Results

	Robust network design
	Problem description
	Mathematical formulation
	Implementation
	Input Data
	Results

	Robust portfolio optimization
	Problem description
	Mathematical formulation
	Highest protection
	Budgeted protection

	Implementation
	Results
	Input Data
	Analysis

	References

	Robust unit commitment
	Problem description
	Robust against power demand variation
	Robust against the N-k contingency

	Mathematical formulation
	Original Unit Commitment Problem
	Load Robust Unit Commitment Problem
	The N-k Contingency-Constrained Unit Commitment Problem

	Implementation
	The Original Unit Commitment Implementation
	The Load Robust Unit Commitment Implementation
	The N-k Contingency-Constrained Unit Commitment Implementation

	Results
	References

	Production planning under energy supply uncertainty
	Problem description
	Mathematical formulation
	Implementation
	Input Data
	Results
	References

	Bibliography

