Reference manual

FICO® Xpress Optimization

Xpress Mosel Libraries

Reference manual

Release 4.8

Last u te October 2017

www.fico.com Make every decision count™

This material is the confidential, proprietary, and unpublished property of Fair Isaac Corporation.
Receipt or possession of this material does not convey rights to divulge, reproduce, use, or allow
others to use it without the specific written authorization of Fair Isaac Corporation and use must
conform strictly to the license agreement.

The information in this document is subject to change without notice. If you find any problems in
this documentation, please report them to us in writing. Neither Fair Isaac Corporation nor its
affiliates warrant that this documentation is error-free, nor are there any other warranties with
respect to the documentation except as may be provided in the license agreement.

©2001-2017 Fair Isaac Corporation. All rights reserved. Permission to use this software and its
documentation is governed by the software license agreement between the licensee and Fair Isaac
Corporation (or its affiliate). Portions of the program may contain copyright of various authors and
may be licensed under certain third-party licenses identified in the software, documentation, or
both.

In no event shall Fair Isaac Corporation or its affiliates be liable to any person for direct, indirect,
special, incidental, or consequential damages, including lost profits, arising out of the use of this
software and its documentation, even if Fair Isaac Corporation or its affiliates have been advised of
the possibility of such damage. The rights and allocation of risk between the licensee and Fair Isaac
Corporation (or its affiliates) are governed by the respective identified licenses in the software,
documentation, or both.

Fair Isaac Corporation and its affiliates specifically disclaim any warranties, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. The software and
accompanying documentation, if any, provided hereunder is provided solely to users licensed under
the Fair Isaac Software License Agreement. Fair Isaac Corporation and its affiliates have no
obligation to provide maintenance, support, updates, enhancements, or modifications except as
required to licensed users under the Fair Isaac Software License Agreement.

FICO and Fair Isaac are trademarks or registered trademarks of Fair Isaac Corporation in the United
States and may be trademarks or registered trademarks of Fair Isaac Corporation in other countries.
Other product and company names herein may be trademarks of their respective owners.

Xpress Mosel
Deliverable Version: A
Last Revised: October 2017

Version 4.8

Contents

Introduction 1
1 Mosel Run Time Library 2
1.1 General e e e e e e e e e e 3
1.1.1 Initialization and terminationo o o 3
XPRMINIt . o . e e e e e e e e e e e e 4
XPRMgetlicerrmsg o e e e 5
XPRMfinish, XPRMfree i e 6
XPRMgetdefworkdir 7
XPRMgetlibpath e 8
XPRMfreelibpath 9
XPRMsetdefworkdir. e e 10
XPRMsetlocaledir e e e 11
XPRMsetrestrictions L e e 12
XPRMsetsdmax v ittt e e e e e e e e e e 13
XPRMremovetmpdir e e e e e e e 14
XPRMgetlocaledir e 15
XPRMgetsdmax o e e e e e e 16
XPRMgetversion o o e e e e e e e e e e e 17
XPRMG@etversions i i i i e e e e e e e e e e 18

1.1.2 Model management e e 19
XPRMloadmod, XPRMloadmodsec« . i i it 20
XPRMsetdefstream e e e 21
XPRMresetmod e e e e e e 22
XPRMrunmod e e e e e e e e 23
XPRMisrunmod e e e e e e 24
XPRMstoprunmod o e e e e e e e e e e e 25
XPRMtermrunmod e e e e e 26
XPRMunloadmod e e e e e e e 27
XPRMgetannotations e e 28
XPRMgetmodprop i i i e e e e e e e e 29
XPRMgetnextdep o o i i i e e 30
XPRMgetnextmod e e 31
XPRMfindmod e e e e e 32

1.2 Post processing interface 33
XPRMdsotyptostr e e e e e e e e 34
XPRMfindident e e e 35
XPRMfindattrdesc i e e e e e e e e 37
XPRMfindtypecode e e e e e e 38
XPRMgetattr o e e e e e e e 39
XPRMgetnextanident e e e e e 40
XPRMgetnextident e e e e 41
XPRMgetnextparam o i it e e e e e e e e e e e e e e e e e e 42
XPRMgetnextpbcomp L e e e e e 43
XPRMgetnextproC o o i e e e e e e e e e e e e e e 44

Fair Isaac Corporation Confidential and Proprietary Information i

Contents

XPRMgetnextreq o e e e e e 45
XPRMgetnextattrdesc e e e e e e 46
XPRMgetprocinfo e e e e e e e e 47
XPRMgettypeprop o o o o e e e e e e e e e e e e e e e 48
1.2.1 LiStS .« o o o e e e e e e e e e 50
XPRMgetlistsize o o o i e e 51
XPRMgetlisttype o o o e e 52
XPRMgetnextlistelt 53
XPRMgetprevlistelt 54
1.2.2 Sets . . . e e e e e e e e e 55
XPRMgetsetsize o i i e e e e 56
XPRMgetsettype o i i e e e e e e e e e e 57
XPRMgetelsetval e 58
XPRMgetelsetndx e e e 59
XPRMgetfirstsetndx e e e e 60
XPRMgetlastsetndx e 61
1.2.3 Arrays . . o o e e e e e e e e e e e e e e e e e 62
XPRMgetarrdim e e e 63
XPRMgetarrtype o e e e e e 64
XPRMgetarrsize o e e e e e 65
XPRMgetarrsets o o e e e e e e e e 66
XPRMgetfirstarrentry e e 67
XPRMgetlastarrentry e 68
XPRMgetnextarrentry e 69
XPRMgetfirstarrtruentry L e 70
XPRMgetnextarrtruentry 71
XPRMchkarrind e e e e e 72
XPRMcmpindices i i e e e e e e e e e e 73
XPRMgetarrval e e e 74
1.2.4 ReCOrds i e e e e e 75
XPRMgetnextfield e 76
XPRMgetfieldval e 77
1.2.5 Problems e e 78
XPRMgetprobstat e 79
XPRMexportprob e e e 80
XPRMgetobjval 81
XPRMgetvsol e e e e e e e 82
XPRMgetcsol o o e e e e e e 83
XPRMgetrcost o . i e e e e 84
XPRMgetdual e 85
XPRMgetslack e 86
XPRMgetact e e e e e e e 87
XPRMgetvarnum o e e e e e e e e e 88
XPRMgetctrnum L e e e e e e e e e e 89
XPRMselectprob e 90
1.2.6 Miscellaneous e e e 91
XPRMfreememblk e 92
XPRMdate2jdn o e e e e e e e 93
XPRMjdn2date o o e 94
XPRMtIimeE . . e e e e e e e e e e e e e 95
XPRMpathcheck e 96
XPRMcb_sendint. e e 97
XPRMcb_sendreal e 98
XPRMcb_sendstring e e 99
XPRMcb _sendctrl e e e e e e e e e e e e e e 100

Fair Isaac Corporation Confidential and Proprietary Information i

Contents

1.3 Debuggerinterface e e e 101
XPRMdbg_runmod e e e e e e e 103
XPRMdbg_getnextlocal e 105
XPRMdbg_getlndx e e e e 106
XPRMdbg_getnbindx 107
XPRMdbg_getlocation 108
XPRMdbg_findproclndx e 109
XPRMdbg_setbrkp e 110
XPRMdbg_clearbrkp e e e e e e 111
XPRMdbg_setstacklev L e e e 112

1.4 Handlingofmodules e e 113
XPRMsetdsopath e e e 114
XPRMgetdsopath e e e 115
XPRMregstatdso e e e e e e e e e 116
XPRMautounloaddso e e e e e e e 117
XPRMIIiNAdSO oo o it e e e e e e e e e e e e 118
XPRMAflushdso e e e e e e e e e 119
XPRMgetdsoannotations e e e e e e 120
XPRMgetdsoparam o i i i e e e e e e e e e e 121
XPRMgetnextdso i e e e e e e 122
XPRMgetnextdsoconst e e e e e e 123
XPRMgetnextdsodep o i i i e e e e e e e e e e 124
XPRMgetnextdsotype o i i i e e e e e e e e e e e e 125
XPRMgetnextdsoparam e e e e e 126
XPRMgetnextdsoproC i i i i i e e e e e e e e e e e e e e e e 127
XPRMQetdsoprop o o e e e e e e e e e e e 128
XPRMgetnextiodrv e e e e e e 129
XPRMpreloaddso e e e e e e e e e 130

1.5 Using IO drivers fordataexchange 131
1.5.1 sysfddriver e e e e e e e 131
1.5.2 cbdriVer e e e e e e e e e e e e e 131

1.5.2.1 Handling of generalstreams 131

1.5.2.2 Handling of initializations blocks 132

5.3 memdriVer i e e e e e e e e e e 133

1.54 rawdriVer oo e e e e e e e e e 134

5.5 bindriver e e e e e e e e e e e e e 135

2 Mosel Model Compiler Library 136

2.1 Compilation e e e e e 136
XPRMcompmod, XPRMcompmodsec o v vttt e e e e 137
XPRMexecmod e e e e e e e e e e e e e 139

Appendix 140
A Contacting FICO 140

Product sUPPOrt e e e e e e e e 140

Product education i i i e e e e e e e e e e e e e e e e 140

Product documentation i i i e e e e e e e e e e e e 140

Salesand maintenance L e e e e e e e e e e e e e 141

Related services i i i i e e e e e e e e e e e e e e e e e 141

AbOUL FICO e e e e e e e e e e e 141

Index 142
Fair Isaac Corporation Confidential and Proprietary Information iii

Introduction

The Mosel libraries may be used to embed the Mosel environment in applications developed in a
programming language such as C.

The functions provided enable the user to:

m compile source model files into binary model (bim) files

m load and unload bim files handling several models at a time

m execute models

m access the Mosel internal database through the Post Processing Interface

B manage the dynamic shared objects used by Mosel

Two libraries are provided. The first one, the Run Time Library, contains the functionality required
to load and run models that are already compiled. The second one, the Model Compiler Library, is
the Mosel compiler that can be used to produce binary model files from source model files. In
general, only the first library is used in an application, the models being provided in their binary
form (which can be obtained using the Mosel executable).

This document gives a description of all functions included in the two libraries. For more details
about how to compile and link programs with the Mosel libraries, please refer to the examples in
the distribution of this software.

Fair Isaac Corporation Confidential and Proprietary Information 1

CHAPTER 1

Mosel Run Time Library

The Mosel Run Time (xprm_rt) Library provides a set of functions that may be used to load models
in the form of bim files, execute them and access model objects.

Programs using this library must include the header file xprm_rt.h that defines the following

types:

XPRMmodel: reference to a model stored in core memory
XPRMdsolib: reference to a dynamic shared object descriptor
XPRMattrdesc: reference to an attribute descriptor

XPRMmpvar: reference to a decision variable

XPRMlinctr: reference to a linear constraint

XPRMset: reference to a set

XPRMlist: reference to a list

XPRMarray: reference to an array

XPRMproc: reference to a procedure or function

The following basic types are also defined for completeness:

XPRMinteger: integer value (C type int)

XPRMreal: real value (C type double)

XPRMboolean: Boolean value (C type int: 0 = false, 1 = true)
XPRMstring: text string value (C type const char *)

Note that all text strings handled by functions of this library are encoded in UTF-8. It is therefore
required to convert text strings to alternate encodings when exchanging data with other libraries
not working with UTF-8. In particular the C library supports either wide characters (wchar_t type)
or the default system encoding (that depends on the localisation of the system). These encoding
conversions can be achieved with the help of the XPRNLS library (please refer to the XPRNLS
Reference Manual for further details).

Fair Isaac Corporation Confidential and Proprietary Information 2

Mosel Run Time Library

1.1 General

1.1.1 Initialization and termination

Each program using the Mosel libraries must start with a call to XPRMinit. If a Mosel library is

loaded and unloaded dynamically at run time, the termination function XPRVMfinish must be
called before unloading the library in order to release the resources Mosel is using.

XPRMfinish, XPRMfree
XPRMfreelibpath
XPRMgetdefworkdir
XPRMgetlibpath
XPRMgetlicerrmsg
XPRMgetlocaledir
XPRMgetsdmax
XPRMgetversion
XPRMgetversions
XPRMinit
XPRMremovetmpdir
XPRMsetdefworkdir
XPRMsetlocaledir
XPRMsetrestrictions

XPRMsetsdmax

Finish Mosel.

Release the memory allocated by XPRMgetlibpath.

Get default current working directory.

Get the location of the Mosel runtime library.

Get license error message.

Get the location of the translated messages.

Get the maximum depth of a stack dump.
Get the version number of Mosel.

Get version numbers.

Initialize Mosel.

Remove the Mosel temporary directory.

Set default current working directory.

Set the location of the translated messages.

Set execution restrictions.

Set the maximum depth of a stack dump.

p. 6
p- 9
p.7
p.8
p.5
p. 15
p. 16
p- 17
p. 18
p.4
p. 14
p. 10
p- 11
p-12
p. 13

Fair Isaac Corporation Confidential and Proprietary Information

Mosel Run Time Library

XPRMinit

Purpose
Initialize Mosel.

Synopsis
int XPRMinit(void);

Return value
0 if executed successfully, 32 if Mosel is running in “trial mode”, other values indicate a license
error.

Further information
This function initializes Mosel. It needs to be called before any other function described in this
document may be executed. In case of failure, the function XPRVMgetlicerrmsg may be used to
obtain further information.

Related topics
XPRMfinish, XPRMgetlicerrmsg.

Fair Isaac Corporation Confidential and Proprietary Information

Mosel Run Time Library

XPRMgetlicerrmsg

Purpose
Get license error message.

Synopsis
int XPRMgetlicerrmsg(char *msg, int maxlen);
Arguments
msg Pointer to an area where the error message is stored

maxlen Size of msg

Return value
Error code.

Further information
This function returns the last license error message.

Related topics
XPRMinit.

Fair Isaac Corporation Confidential and Proprietary Information

Mosel Run Time Library

XPRMfinish, XPRMfree

Purpose
Finish Mosel.

Synopsis
int XPRMfinish(void);

Return value
0 if executed successfully, a non-zero value otherwise.

Further information
This function finishes a Mosel session. It unloads all modules that have been loaded, deletes the
Mosel temporary directory and completely frees the memory used by Mosel.

Related topics
XPRMinit.

Fair Isaac Corporation Confidential and Proprietary Information

Mosel Run Time Library

XPRMgetdefworkdir

Purpose
Get default current working directory.

Synopsis
const char *XPRMgetdefworkdir(void);

Return value
The current working directory or NULL.

Further information

1. The returned value may be NULL indicating that the process wide current working directory is
used for this parameter.

2. This information can also be obtained using XPRMgetdsoparam asking for the "workdir" parameter.

Related topics
XPRMsetdefworkdir.

Fair Isaac Corporation Confidential and Proprietary Information 7

Mosel Run Time Library

XPRMgetlibpath

Purpose
Get the location of the Mosel runtime library.

Synopsis
const char *XPRMgetlibpath(void);

Return value
The directory where the Mosel runtime library is stored.

Further information

1. The returned string is statically allocated the first time the function is called: the routines
¥PRMinit (upon failure) and xPRMfinish will release this memory block. It is also possible to free
the allocated memory explicitly by calling XPRMfreelibpath.

2. This function may be called before Mosel has been initialised with XPRMinit.

Related topics
XPRMgetdsopath.

Fair Isaac Corporation Confidential and Proprietary Information

Mosel Run Time Library

XPRMfreelibpath

Purpose
Release the memory allocated by XPRMgetlibpath.

Synopsis
void XPRMfreelibpath(void);

Further information
This function is automatically called by ¥PRMinit (when it fails) and XPRMfinish.

Related topics
XPRMsetdsopath.

Fair Isaac Corporation Confidential and Proprietary Information

Mosel Run Time Library

XPRMsetdefworkdir

Purpose
Set default current working directory.

Synopsis
int XPRMsetdefworkdir(const char *path);

Argument
path New working directory or NULL

Return value
0 if successful, 1 otherwise.

Further information

1. Except for absolute file names, path resolution is relative to the current working directory
defined by a call to this routine. This parameter is also used as the initial working directory when
starting the execution of a model.

2. If the provided path is NULL (the default value after library initialisation) or an empty string, the
system uses the current working directory of the process as provided by the operating system.
Using this routine has no effect on the process wide current working directory.

3. The provided path is expanded (i.e. it can be relative to the current directory) and tested
according to the current restriction settings (see ¥PRMsetrestrictions). If the restriction NoRead is
active, this routine always fails and the current working directory is automatically set to the
Mosel temporary directory.

Related topics
XPRMgetdefworkdir.

Fair Isaac Corporation Confidential and Proprietary Information 10

Mosel Run Time Library

XPRMsetlocaledir

Purpose
Set the location of the translated messages.

Synopsis

void XPRMsetlocaledir(const char *localedir);

Argument
localedir Path to the NLS directory

Further information
This function can be used to specify the location of the translated messages (native language
support) if they are not stored in the usual place.

Related topics
XPRMgetlocaledir.

Fair Isaac Corporation Confidential and Proprietary Information

1

Mosel Run Time Library

XPRMsetrestrictions

Purpose
Set execution restrictions.

Synopsis
int XPRMsetrestrictions(unsigned int restr);

Argument

restr Restrictions as a bit encoded integer. The following values can be combined:
XPRM_RESTR_NOWRITE Disable write access

XPRM_RESTR_NOREAD Disable read access (implies XPRM_RESTR_NOWRITE)
XPRM_RESTR_NOEXEC Disable routines allowing to execute external commands
XPRM_RESTR_WDONLY Restrict disk access to current working directory
XPRM_RESTR_NOTMP Disable temporary directory

XPRM_RESTR_NODB Disable database access

Return value
0 if successful, 1 otherwise.

Further information

1. This routine activates the restricted mode by setting the restrictions to be applied. Retrictions can
be set only once just after the library has been initialised (using XPRMinit), the routine will fail if
called at a later stage.

2. If XPRM_RESTR_NOREAD is used, the restriction XPRM_RESTR_NOWRITE is implicitly selected and access
to the local disk is disabled except for the temporary directory which becomes the current
working directory. To disable entirely disk access to the local system, XPRM_RESTR_NOTMP has also to
be selected.

3. The current active restrictions can be obtained using XPRlMgetdsoparam asking for parameter
"restrict".

Related topics
XPRMsetdefworkdir.

Fair Isaac Corporation Confidential and Proprietary Information 12

Mosel Run Time Library

XPRMsetsdmax

Purpose
Set the maximum depth of a stack dump.

Synopsis
void XPRMsetsdmax(int sdmax);

Argument
sdmax maximum number of levels to report

Further information
After a runtime error Mosel may report the content of the call stack for debugging purposes. This
function defines the maximum number of levels to display in such a case. Using a value smaller
than 1 disables stack dumps (this is the default).

Related topics
XPRMgetsdmax.

Fair Isaac Corporation Confidential and Proprietary Information 13

Mosel Run Time Library

XPRMremovetmpdir

Purpose
Remove the Mosel temporary directory.

Synopsis
int XPRMremovetmpdir(void) ;

Return value
0 if successful, 1 otherwise

Further information

1. This function can be called only when no model is being executed and if the default working
directory is not a subdirectory of the temporary directory.

2. The Mosel temporary directory is also removed by XPRNMfinish.

Related topics
XPRMsetdefworkdir.

Fair Isaac Corporation Confidential and Proprietary Information

14

Mosel Run Time Library

XPRMgetlocaledir

Purpose

Get the location of the translated messages.

Synopsis
const char *XPRMgetlocaledir(void);

Return value
Path to the NLS directory

Related topics
XPRMsetlocaledir.

Fair Isaac Corporation Confidential and Proprietary Information

15

Mosel Run Time Library

XPRMgetsdmax

Purpose
Get the maximum depth of a stack dump.

Synopsis
int XPRMgetsdmax(void);

Return value
Maximum number of levels reported in a stack dump

Related topics
XPRMsetsdmax.

Fair Isaac Corporation Confidential and Proprietary Information

16

Mosel Run Time Library

XPRMgetversion

Purpose
Get the version number of Mosel.

Synopsis

const char *XPRMgetversion(void);

Return value
The version number of Mosel as a text string.

Further information

This function returns the version number of Mosel.

Fair Isaac Corporation Confidential and Proprietary Information

17

Mosel Run Time Library

XPRMgetversions

Purpose
Get version numbers.

Synopsis
int XPRMgetversions(int whichone);
Argument
whichone Version number to return:
0 Version of Mosel
1 Version of BIM format
2 Version of Native Interface

Return value
The version number requested or 0 in case of error.

Further information
This function returns the version number of Mosel, the Native Interface or BIM file format in
numerical form. For instance for the Mosel version 1.2.1, the returned value is 1002001.

Fair Isaac Corporation Confidential and Proprietary Information

18

Mosel Run Time Library

1.1.2 Model management

The following functions are required to manipulate models loaded in core memory: loading,
running or unloading a model, getting information. Several models may be loaded in a single
session of Mosel and used alternatively: each function requires a model (type XPRMmodel) as
parameter to designate on which of the loaded models the operation is to be performed. This
object of type XPRMmodel is returned by the function XPRMloadmod when a model has been
successfully read from a bim (= binary model) file'.

XPRMf indmod Find a model by its name or order number. p.
XPRMgetannotations Retrieve annotations of a model. p.
XPRMgetmodprop Get a property of a model. p.
XPRMgetnextdep Enumerate dependencies of a model. p.
XPRMgetnextmod Get the next model. p.
XPRMisrunmod Check if a model is running. p.
XPRMloadmod, XPRMloadmodsec Load a Binary Model file. p.
XPRMresetmod Reset a model. p.
XPRMrunmod Run a model. p.
XPRMsetdefstream Set default input/output streams. p.
XPRMstoprunmod Stop a running model. p.
XPRMtermrunmod Terminate execution of a model. p.
XPRMunloadmod Unload a model. p.

32
28
29
30
31
24
20
22
23
21
25
26
27

bim files are produced by the Mosel compiler either by using the command line interpreter or with the Model Compiler

Library.

Fair Isaac Corporation Confidential and Proprietary Information

19

Mosel Run Time Library

XPRMloadmod, XPRMloadmodsec

Purpose
Load a Binary Model file.

Synopsis
XPRMmodel XPRMloadmod(const char *bname, const char *intname);
XPRMmodel XPRMloadmodsec(const char *bname, const char *intname, const char *flags,
const char *passfile, const char *privkey, const char xkeys);

Arguments

bname Name of a binary model file

intname Internal name (may be NULL)

flags Loading options (may be NULL, options may be separated by spaces or ’-’ symbols):
ne Check signature (if the file is signed)
nyn If the file is signed, load it only if the signature is valid
uTn Load only signed files with a valid signature
ug" The argument passfile is a file name (not the password itself)

passfile Password or password file (for encrypted bim files)
privkey Private key file (for encrypted bim files)
keys File of public keys

Return value
Reference to the model that has been loaded or NULL.

Further information

1. This function returns the reference of a new model instance created from a binary model file. The
second form of the function will be used to load encrypted and/or signed bim files if additional
information has to be provided. While loading a model from a file, Mosel also automatically
opens any additional modules that are required by this model. If an internal name is provided, it
is used in place of the name stored in the bim file. If a model already existing in core memory (i.e.
with the same internal name) is loaded a second time, the first instance of this model is deleted
and a reference to the newly created model is returned. If model name or provided internal
name is "*", a unigue name is automatically generated using pattern "model_#" where # is a
hexadecimal number. If the loaded model has no name (empty string) and no internal name is
provided, string " (none)" is used as a default.

2. The argument keys is a list of public key files (i.e. each line of the file is a key file name): when a
signed bim file is loaded, its signature is checked with the keys listed in this file. If this argument
is not specified, the signing key is searched in the default public keys directory located at
getparam("ssl_dir")+"/pubkeys".

Related topics
XPRMrunmod, XPRMdbg_runmod, XPRMunloadmod.

Fair Isaac Corporation Confidential and Proprietary Information 20

Mosel Run Time Library

XPRMsetdefstream

Purpose
Set default input/output streams.

Synopsis
int XPRMsetdefstream(XPRMmodel model, int wmd, const char *filename);
Arguments
model Reference to a model or NULL
wmd Stream to set. Possible values:
XPRM_F_READ Default input stream
XPRM_F_WRITE Default output stream
XPRM_F_ERROR Default error stream

XPRM_F_LINBUF Use line buffering
filename Extended file name to be used for the stream.

Return value

0 if successful, 1 otherwise.

Further information

1. This function sets default 10 streams to be used by a model or by the entire system. Model

streams can be changed only when the model is not running. Each stream is associated to an
extended file name (i.e. 10 drivers can be used). For output streams, XPRM_F_LINBUF may be
specified (e.g.XPRM_F_WRITE+XPRM_F_LINBUF) in order to enable line buffering for the
corresponding stream (the error stream is always open using line buffering).

. For input and output streams, the filename is stored and streams are actually open when
execution of the model starts: in case of an invalid file name, the error is not reported by this
function. The error stream is immediately opened so in the case of an invalid file name is
detected by this function. If the first parameter is NULL, this function defines the corresponding
global stream: it is used as the default when a model is loaded and whenever no model
information is available (e.g. compilation errors, error on modules, etc.). This option can be used
only if no model is currently loaded in memory.

. Using an empty string as the file name implies resetting to the original default stream: for a
model this is the corresponding global stream, if no model is provided, this is the operating
system stream.

Fair Isaac Corporation Confidential and Proprietary Information 21

Mosel Run Time Library

XPRMresetmod

Purpose
Reset a model.

Synopsis
void XPRMresetmod (XPRMmodel model) ;

Argument
model Reference to a model

Further information
This function resets a model after its execution: all resources it has allocated are released. The
model returns to its state just after it has been loaded into memory. Note that this function is
automatically called before a model is unloaded or run.

Related topics
XPRMrunmod, XPRMdbg_runmod, XPRMunloadmod.

Fair Isaac Corporation Confidential and Proprietary Information

22

Mosel Run Time Library

XPRMrunmod
Purpose
Run a model.
Synopsis
int XPRMrunmod(XPRMmodel model, int *returned, const char *parlist);
Arguments
model Reference to a model
returned Pointer to an area where the result value is returned
parlist String composed of model parameter initializations separated by commas, may be
NULL

Return value
XPRM_RT_OK Normal termination
XPRM_RT_ERROR An error occured during execution
XPRM_RT_MATHERR Mathematical error (e.g. division by zero)
XPRM_RT_IOERR Input/output error (e.g. cannot open file)
XPRM_RT_NULL A NULL reference error occurred
XPRM_RT_LICERR Execution could not start because no license was available
XPRM_RT_STOP Bit set if execution has been interrupted
XPRM_RT_BREAK Interruption because of a breakpoint (see Section 1.3)

Further information
This function executes the given model. The parameter parlist may be used to initialize the
model parameters of the model/program (e.g. "PAR1=12,PAR2="tutu’"). The special model
parameter workdir defines the initial working directory of the model. The parameter returned
receives the result of the execution (e.g. parameter value of the “exit” procedure). The bit
XPRM_RT_STOP is set if the execution of the model has been interrupted by a call to the function
XPRMstoprunmod.

Related topics
XPRMdbg_runmod, XPRMisrunmod, XPRMstoprunmod.

Fair Isaac Corporation Confidential and Proprietary Information

23

Mosel Run Time Library

XPRMisrunmod

Purpose
Check if a model is running.

Synopsis
int XPRMisrunmod (XPRMmodel model);

Argument
model Reference to a model

Return value
1 if the model is running, 0 otherwise.

Further information
This function checks if the given model is being run.

Related topics
XPRMrunmod, XPRMdbg_runmod, XPRMstoprunmod.

Fair Isaac Corporation Confidential and Proprietary Information

Mosel Run Time Library

XPRMstoprunmod

Purpose
Stop a running model.

Synopsis
void XPRMstoprunmod(XPRMmodel model);

Argument
model Reference to a model

Further information
This function interrupts the execution of a model.

Related topics

XPRMisrunmod, XPRMrunmod, XPRMdbg_runmod, XPRMtermrunmod.

Fair Isaac Corporation Confidential and Proprietary Information

25

Mosel Run Time Library

XPRMtermrunmod

Purpose
Terminate execution of a model.

Synopsis
void XPRMtermrunmod (XPRMmodel model) ;

Argument
model Reference to a model

Further information
This function terminates the execution of a model. The termination is effective even if a
debugger is controlling the model.

Related topics
XPRMisrunmod, XPRMrunmod, XPRMstoprunmod, XPRMdbg_runmod.

Fair Isaac Corporation Confidential and Proprietary Information

26

Mosel Run Time Library

XPRMunloadmod

Purpose
Unload a model.

Synopsis
int XPRMunloadmod (XPRMmodel model);

Argument
model Reference to a model

Return value
0 if successful, 1 otherwise.

Further information
This function unloads the given model. All resources used by this model, including modules, are
released. The function fails if the model is being run.

Related topics
XPRMloadmod.

Fair Isaac Corporation Confidential and Proprietary Information

27

Mosel Run Time Library

XPRMgetannotations

Purpose
Retrieve annotations of a model.

Synopsis
ynop int XPRMgetannotations (XPRMmodel model, const char *ident, const char *prefix, const
char **ann, int maxann);

Arguments
model Reference to a model
ident Symbol to be considered or NULL for global declarations
prefix Filtering prefix
ann Array of size maxann where to store the annotations (can be NULL)
maxann Size of ann (to get up to maxann/2 annotations)

Return value
Size of the array required to get all annotations (two times the number of found annotations).

Further information

1. This function retrieves the annotations associated to the given symbol using a prefix as a filter
(e.g. use "doc." to get all the documentation annotations). The result is stored in the provided
array: each annotation occupies 2 entries in the array (the first one for the name of the
annotation and the following one for its value).

2. The returned value may exceed maxann (but no more than maxann entries are recorded in the
array). To get the required size for ann the function may be called with a NULL array.

Related topics
XPRMgetnextanident, XPRMgetdsoannotations.

Fair Isaac Corporation Confidential and Proprietary Information

28

Mosel Run Time Library

XPRMgetmodprop

Purpose

Get a property of a model.

Synopsis

int XPRMgetmodprop (XPRMmodel model, int prop, XPRMalltypes *value);

Arguments

model

prop

value

Return value

Reference to a model

Property to retrieve. Possible values:

XPRM_PROP_NAME
XPRM_PROP_ID
XPRM_PROP_VERSION
XPRM_PROP_SYSCOM
XPRM_PROP_USRCOM
XPRM_PROP_SIZE
XPRM_PROP_DATE
XPRM_PROP_SECSTAT
XPRM_PROP_SKEYFP
XPRM_PROP_NBTYPES
XPRM_PROP_UNAME

Model name (cf. model statement)

Order number

Model version

System comment

User comment

Amount of memory (in bytes) used by the model
Compilation date

Security status

Key fingerprint (if the bim file was signed)
Number of types

Unique model name

Pointer to an area where the model property is returned

0 if successful, 1 otherwise.

Further information

1. This function returns information about a given model. The type of the property (specified via
the prop argument) decides how the argument value is interpreted: the field integer is used for
ID, VERSION, SECSTAT and NBTYPES; size for SIZE and DATE (should be casted to the C type time_t);
and string for the other properties. The returned version number is coded as an integer, for
example, 1.2.3 is coded as 1002003.

2. The security status is a bit encoded integer indicating whether the bim file was encrypted (value
XPRM_SECSTAT_CRYPTED); signed (value XPRM_SECSTAT_SIGNED). If the bimfile was signed, the bits
XPRM_SECSTAT_VERIFIED and XPRM_SECSTAT_UNVERIFIED indicate whether the signature was valid
(if none of these bits is set the signature was not checked).

Fair Isaac Corporation Confidential and Proprietary Information 29

Mosel Run Time Library

XPRMgetnextdep

Purpose
Get the next dependency (module or package) of a model.

Synopsis
void *XPRMgetnextdep(XPRMmodel model, void *ref, const char **name,
int *version, int *dso_pkg);

Arguments
model Reference to a model
ref Reference pointer or NULL
name Returned name of the package/module

version Returned version of the package/module
dso_pkg Returned type of the dependency: 1 for a package and 0 for a module

Return value
Reference pointer for the next call to XPRMgetnextdep.

Further information
This function returns the next dependency of a model: model dependencies are the packages it
includes and the modules it requires. The second parameter is used to store the current location
in the table of dependencies; if this parameter is NULL, the first dependency of the table is
returned. This function returns NULL if it is called with the reference to the last dependency
defined by the given model. Otherwise, the returned value can be used as the input parameter
ref to get the following dependency and so on. Note that this function allocates memory when it
is called for the first time and releases the allocated data when all items have been returned (i.e.
the function returns NULL).

Fair Isaac Corporation Confidential and Proprietary Information 30

Mosel Run Time Library

XPRMgetnextmod

Purpose
Get the next model.

Synopsis
XPRMmodel XPRMgetnextmod(XPRMmodel model);

Argument
model Reference to a model or NULL

Return value
Reference to a model or NULL .

Further information
Mosel maintains a list of loaded models. This function returns the next model held in the internal
list after the given model. If the input parameter is set to NULL, the first model in the list is
returned. If the given model is the last in the list, NULL is returned.

Fair Isaac Corporation Confidential and Proprietary Information 31

Mosel Run Time Library

XPRMfindmod

Purpose
Find a model by its name or order number.

Synopsis
XPRMmodel XPRMfindmod(const char *name, int number);

Arguments
name Name of a model or NULL
number Model order number or -1

Return value
Reference to a model or NULL if the model does not exist.

Further information
In the list of loaded models, each model is characterised by its internal name (the name stored in
the bim file, not the filename) and an order number (this number is automatically assigned to the
model when it is loaded). This function returns a model that is identified either by its name
(number = -1) or by its order number (name = NULL). If both parameters are defined, the function
returns a pointer to the model defined by name.

Related topics
XPRMfindmod.

Fair Isaac Corporation Confidential and Proprietary Information 32

Mosel Run Time Library

1.2 Post processing interface

The post processing interface gives easy access to the internal database of Mosel. This database is
composed of all model objects that are defined in a bim file (like constants) or created during the

execution of a model (like arrays). Obviously the dynamically created objects are only available

after the model has been run.
Note that the dictionary is not available if the model has been compiled with the option “s” (strip
symbols) and no identifier has been explicitly published (refer to the description of the public
qualifier in declarations): such a model cannot be accessed through the post processing interface.

XPRMdsotyptostr Get a string representation from an external type reference. p. 34
XPRMfindattrdesc Find an attribute descriptor from its name. p. 37
XPRMfindident Find an identifier in the dictionary. p. 35
XPRMfindtypecode Find the code associated to a type. p. 38
XPRMgetattr Get an attribute of an entity. p. 39
XPRMgetnextanident Get the next annotated identifier in the dictionary. p. 40
XPRMgetnextattrdesc Get the next attribute descriptor. p. 46
XPRMgetnextident Get the next identifier in the dictionary. p. 41
XPRMgetnextparam Get the next parameter of the model. p. 42
XPRMgetnextpbcomp Enumerate components of a problem type. p. 43
XPRMgetnextproc Get the next overloaded version of a procedure or function. p. 44
XPRMgetnextreq Enumerate requirements of a package. p. 45
XPRMgetprocinfo Get the procedure/function information. p. 47
XPRMgettypeprop Get a property of a type. p- 48
Fair Isaac Corporation Confidential and Proprietary Information 33

Mosel Run Time Library

XPRMdsotyptostr

Purpose
Get a string representation from an external type reference.

Synopsis
int XPRMdsotyptostr (XPRMmodel model,int type, void *value, char *str,
int size);
Arguments
model Reference to a model
type Code of the external type
value Entity to convert
str Destination string
size Maximum length of the string

Return value
Size of the generated string or -1 in case of error.

Further information

1. This function converts an entity of an external type into its textual representation. If the type

does not support this convertion, the function produces a string using the address of the entity.

2. The returned length might be larger than size. In this case this return value is the minimum
buffer size required to generate the text representation and the destination string str is not
populated.

Fair Isaac Corporation Confidential and Proprietary Information

34

Mosel Run Time Library

XPRMfindident

Purpose
Find an identifier in the dictionary.

Synopsis
int XPRMfindident (XPRMmodel model, const char *text,
XPRMalltypes *value);
Arguments
model Reference to a model
text ldentifier
value Pointer to an area where the dictionary entry is returned

Return value
Type and structure of the returned dictionary entry, or 0 if the identifier is not registered.

Further information
This function returns the dictionary entry of a given identifier for a given model, together with
the type and structure of the entry. Type and structure are bit encoded and can be extracted
using the macros XPRM_TYP(t) and XPRM_STR(t).

The possible structures are:
XPRM_STR_CONST the object is a constant

XPRM_STR_REF the object is a reference to a scalar
XPRM_STR_LIST the object is a list

XPRM_STR_SET the object is a set

XPRM_STR_ARR the object is an array

XPRM_STR_PROC the object is a procedure or function
XPRM_STR_MEM the object is a memory block
XPRM_STR_UTYP the object is a user defined type

Depending on the structure, the possible types are:
XPRM_TYP_NOT no type (procedure or list)

XPRM_TYP_INT integer (constant, reference, list, set, array, function)
XPRM_TYP_REAL real (constant, reference, list, set, array, function)
XPRM_TYP_STRING text string (constant, reference, set, array, function)
XPRM_TYP_BOOL Boolean (constant, reference, list, set, array, function)
XPRM_TYP_MPVAR decision variable (reference, list, set, array)
XPRM_TYP_LINCTR linear constraint (reference, list, set, array)

Any other value designates an external type (type provided by a module or defined in the model).
Moreover, if the structure is XPRM_STR_UTYP, the identifier is the name of a user type and the value
(an integer) corresponds to the expanded code of this type (see XPRVMgettypeprop). Otherwise, the
function XPRVMgettypeprop can be used to get the name and the properties of this type.

The union XPRMalltypes groups all possible types and the result of a call to XPRMfindident is
decoded as follows depending on the structure:

value.integer for constant, reference or user type

value.real for constant or reference
value.string for constant or reference
value.boolean for constant or reference
value.mpvar for reference
value.linctr for reference

Fair Isaac Corporation Confidential and Proprietary Information 35

Mosel Run Time Library

value.list for list (to be used as input for list functions)

value.set for set (to be used as input for set functions)

value.array for array (to be used as input for array functions)

value.ref for areference to an external type (available operations depend on the actual type)
value.proc for procedure and function

value.memblk for memory block

Memory blocks are generated by the mem IO driver when used with a label. Blocks created this way
can be found using the label: the name is linked to the following structure describing the block:

typedef struct
{
void *ref; /* Base address of the block */
size_t size; /* Size of the block */
} XPRMmemblk;

Note that memory blocks allocated by Mosel are managed by the memory manager of the 10
driver and must not be explicitly released.

Related topics
XPRMgetnextident, XPRMdbg_getnextlocal, XPRMgettypeprop.

Fair Isaac Corporation Confidential and Proprietary Information 36

Mosel Run Time Library

XPRMfindattrdesc

Purpose
Find an attribute descriptor from its name.

Synopsis
XPRMattrdesc XPRMfindattrdesc(XPRMmodel model, int type, const char **name, int
*atype) ;

Arguments
model Reference to a model
type Type number for the attribute
name Name of the attribute

Return value
Reference pointer to an attribute descriptor or NULL if no corresponding function could be found.

Further information
The attribute att of an entity of type T is obtained by calling the function getatt returning an
integer, a string, a real or a Boolean and taking as its only argument an entity of type T. This
routine returns a descriptor of such a function that can be used with XPRVgetattr in order to
retrieve the corresponding attribute of an entity of the corresponding type.

Related topics
XPRMgetnextattrdesc, XPRMgetattr.

Fair Isaac Corporation Confidential and Proprietary Information 37

Mosel Run Time Library

XPRMfindtypecode

Purpose
Find the code associated to a type.

Synopsis

int XPRMfindtypecode (XPRMmodel model, const char *name);
Arguments

model Reference to a model

name Name of a type

Return value
The type code or -1 if the type cannot be found.

Further information
Each external type (user defined or coming from a module) is identified by a type code. This
routine returns the code corresponding to a type name.

Related topics
XPRMgettypeprop.

Fair Isaac Corporation Confidential and Proprietary Information

38

Mosel Run Time Library

XPRMgetattr

Purpose
Get an attribute of an entity.

Synopsis
ynop int XPRMgetattr(XPRMmodel model, XPRMattrdesc attrdesc, void *ref, XPRMalltypes
*value) ;

Arguments
model Reference to a model
attrdesc An attribute descriptor
ref An entity of the type associated to the attribute
value Pointer to an area where the value of the attribute is returned

Return value
Type number of the returned value or 0 in case of error.

Example
The following example displays the reduced cost of variable x.

XPRMalltypes x,rcost;

XPRMattrdesc getrcost;

XPRMfindident (model,"x",&x) ;
getrcost=XPRMfindattrdesc(model,XPRM_TYP_MPVAR, "rcost");
XPRMgetattr (model,getrcost,x.ref,&rcost) ;

printf ("getrcost(x)=lg\n",rcost.real);

Further information

1. This function makes it possible to retrieve an attribute of an entity using a type descriptor as
returned by XPRlMfindattrdesc.

2. The internal list of types attributes is deleted each time the model is run or reset: descriptors
obtained before a model execution should not be used after the model has been run.

Related topics
XPRMgetnextattrdesc, XPRMfindattrdesc.

Fair Isaac Corporation Confidential and Proprietary Information

39

Mosel Run Time Library

XPRMgetnextanident

Purpose
Get the next annotated identifier in the dictionary.

Synopsis

const char *XPRMgetnextanident (XPRMmodel model, void **ref);
Arguments

model Reference to a model

ref Pointer to an area where current location is stored

Return value
An identifier of the symbol table or NULL if all identifiers have been returned.

Further information
This function returns the next identifier for which annotations are available. The second
parameter is used to store the current location in the table; this reference is updated with every
call to this function. If this parameter references a NULL pointer, the first identifier of the table is
returned. This function returns NULL if it is called with the reference to the last identifier in the
internal table.

Related topics
XPRMgetnextident, XPRMgetannotations.

Fair Isaac Corporation Confidential and Proprietary Information 40

Mosel Run Time Library

XPRMgetnextident

Purpose
Get the next identifier in the dictionary.

Synopsis

const char *XPRMgetnextident (XPRMmodel model, void **ref);
Arguments

model Reference to a model

ref Pointer to an area where current location is stored

Return value
An identifier of the symbol table or NULL if all identifiers have been returned.

Further information

1. This function returns the next identifier held in the internal table of symbols. The second
parameter is used to store the current location in the table; this reference is updated with every
call to this function. If this parameter references a NULL pointer, the first identifier of the table is
returned. This function returns NULL if it is called with the reference to the last identifier in the
internal table.

2. The compiler generates automatic names for constant sets (identifiers start with "@") and
anonymous types (identifiers start with "%"). This function reports only automatic names of sets,
however the other symbols can be accessed using XPRMfindident.

3. When the model or package is compiled with debug information included, local symbols of
imported packages are also available (and listed through this function). In order to avoid name
collisions each symbol local to a package is prefixed by the package name and the symbol ~. For
instance the symbol myctr defined in the package mypkg is stored as mypkg~myctr.

4. This function enumerates only globally defined symbols. To get a list of local symbols (like a loop
index) during a debugging session use XPRMdbg_getnextlocal.

Related topics
XPRMdbg_getnextlocal, XPRMfindident.

Fair Isaac Corporation Confidential and Proprietary Information a1

Mosel Run Time Library

XPRMgetnextparam

Purpose
Get the next parameter of the model.

Synopsis

const char *XPRMgetnextparam(XPRMmodel model, void **ref);
Arguments

model Reference to a model

ref Pointer to an area where current location is stored

Return value
The name of the parameter or NULL if there is no subsequent parameter.

Further information
This function returns the next parameter of the given model. The second argument is used to
store the current location in the list of parameters; this reference is updated with every call to this
function. If this argument references a NULL pointer, the first parameter of the model is returned.
This function returns NULL if it is called with the reference to the last parameter in the model as
its second argument.

Fair Isaac Corporation Confidential and Proprietary Information 42

Mosel Run Time Library

XPRMgetnextpbcomp

Purpose
Get the next component of a problem type.

Synopsis
void *XPRMgetnextpbcomp(XPRMmodel model, void *ref, int typcode,
int *type);
Arguments
model Reference to a model
ref Reference pointer or NULL
typcode Type code
type Returned type of the component

Return value
Reference pointer for the next call to XPRMgetnextpbcomp.

Further information

1. Problem types are composed by a collection of components (typically one or more main types and
the associated extensions) each of which being a native problem type. This function returns the
next component of a problem type. The type returned by the function can be decoded in the
same way as for a type returned by XPRNMfindident. The second parameter is used to store the
current location in the table of components of the type; if this parameter is NULL, the first
component of the table is returned. This function returns NULL if it is called with the reference to
the last component for the given problem type. Otherwise, the returned value can be used as the
input parameter ref to get the following component and so on.

2. The routine will return a type 0 as the first component of problem types including an mpproblem
component.

3. A problem type has at least one component: the first component of a native type is the type itself
(i.e. the parameter type receives the value of typcode).

Fair Isaac Corporation Confidential and Proprietary Information 43

Mosel Run Time Library

XPRMgetnextproc

Purpose
Get the next overloaded version of a procedure or function.

Synopsis
XPRMproc XPRMgetnextproc(XPRMproc proc);

Argument
proc Reference to a procedure or function

Return value
A procedure or function reference or NULL if no overloading subroutine is defined.

Further information
This function returns the following overloading defined for the given subroutine. A subroutine
may be defined several times in a model with different sets of parameters. This function gives
access to all the defined overloaded versions of a subroutine.

Related topics
XPRMgetprocinfo.

Fair Isaac Corporation Confidential and Proprietary Information

44

Mosel Run Time Library

XPRMgetnextreq

Purpose
Get the next requirement of a package.

Synopsis
void *XPRMgetnextreq(XPRMmodel model, void *ref, const char **name,
int *type,void **data);

Arguments
model Reference to a model
ref Reference pointer or NULL

name Returned name of the requirement
type Returned type
data Returned extra data for the type

Return value
Reference pointer for the next call to XPRMgetnextreq.

Further information
This function returns the next requirement of a package: requirements of a package are the
symbols it declares but that must be defined by the model using it. The type returned by the
function can be decoded in the same way as for a type returned by XPRlMfindident. The
information returned via the last argument depends on the type: for a scalar, a set or a list a NULL
pointer is returned; for an array the list of the names of the indexing sets is returned through a
text string (for instance the array a:array(S1,52) has the following data string: "s1,82"). In the
case of a subroutine, an XPRMproc reference is provided: this can be used with ¥PRVMgetprocinfo
for getting information on the required routine. The second parameter is used to store the
current location in the table of requirements; if this parameter is NULL, the first requirement of
the table is returned. This function returns NULL if it is called with the reference to the last
requirement defined by the given model. Otherwise, the returned value can be used as the input
parameter ref to get the following requirement and so on.

Fair Isaac Corporation Confidential and Proprietary Information 45

Mosel Run Time Library

XPRMgetnextattrdesc

Purpose

Get the next attribute descriptor.

Synopsis

XPRMattrdesc XPRMgetnextattrdesc(XPRMmodel model,XPRMattrdesc ref,int *ntype,const

Arguments
model
ref

ntype
name

atype

Return value

Reference pointer for the next attribute descriptor or NULL if no further descriptor is available.

char **name,int *atype);

Reference to a model

Reference an attribute descriptor or NULL

Type number supporting the attribute (may be NULL)
Name of the attribute (may be NULL)

Type of the attribute (may be NULL)

Further information

1. This function is used to enumerate attribute descriptors of a model. The second parameter is used
to store the current location in the list of descriptors; if this parameter is NULL, the first descriptor

of the list is returned. This function returns NULL if it is called with the reference to the last
descriptor. Otherwise, the returned value can be used as the input parameter ref to get the

following descriptor and so on.

2. The name, ntype and atype are the returned attribute properties associated to the provided

descriptor ref.

Related topics

XPRMfindattrdesc, XPRMgetattr.

Fair Isaac Corporation Confidential and Proprietary Information

46

Mosel Run Time Library

XPRMgetprocinfo

Purpose

Get the procedure/function information.

Synopsis

int XPRMgetprocinfo(XPRMproc proc, const char *xpartyp, int *nbpar,

Arguments

proc

partyp
nbpar

type

Return value

int *type);

Reference to a procedure or function

Returned string of parameter types

Returned number of parameters

Returned type of the function or XPRM_TYP_NOT for a procedure

0 if successful, 1 otherwise.

Further information
This function provides information about a procedure or function. The type can be decoded like
for any other identifier of a model. Note that a procedure has no return type
(type=XPRM_TYP_NOT). The string of parameter types is a text string describing which parameters
are expected by the function, it is its signature. This string is composed with the following
characters:

xxx |

Ixxx!

Andx.t

Et
Lt

*

an integer

areal

a text string

a Boolean

a decision variable (type mpvar)
a linear constraint (type linctr)
arange set

an array (of any kind)

a set (of any type)

a list (of any type)

external type named ‘xxx’. A type code may also be given as ‘% ???" where '???' (3
hexadecimal digits) is the code number

the set named "xxx’

an array indexed by ‘ndx’ of the type ‘t’. ‘'ndx’ is a string describing the type of each
indexing set. ‘ndx’ may be omitted in which case any array of type ‘t' is a valid parameter.

a set of type ‘t’
a list of type ‘t’
function with variable number of parameters (this character is the last one of the string)

For instance, the procedure:

proc(n:integer,

tab:array(range, set of real, myset) of string,
flag:boolean)

has the signature “iAlr!myset!.sb”.

Related topics

XPRMgetnextproc.

Fair Isaac Corporation Confidential and Proprietary Information 47

Mosel Run Time Library

XPRMgettypeprop

Purpose

Synopsis

Get a property of a type.

void *XPRMgettypeprop(XPRMmodel model, int type,
int prop, XPRMalltypes *value);

Arguments

model Reference to a model
type Code of a type
prop Property to retrieve. Possible values:
XPRM_TPROP_NAME Name of the type
XPRM_TPROP_FEAT Encoded features
XPRM_TPROP_EXP Expanded code
XPRM_TPROP_PBID Problem index (-1 if the type is not a problem)
value Pointer to an area where the type property is returned

Return value

0 if successful, -1 if type is not valid and 1 if prop is not supported.

Further information

1.

This function returns a property of an external type (types provided by modules or user defined).
For the property XPRM_TPROP_NAME, the type name is returned in value->string, for the 3 other
properties, the result is returned in value->integer.

. The type features are bit encoded as follows:

XPRM_MTP_CREAT Creation function available for this type

XPRM_MTP_DELET Deletion function available for this type

XPRM_MTP_TOSTR Type can be converted to a string

XPRM_MTP_FRSTR Type can be initialized from a string

XPRM_MTP_PRTBL Type can be converted to a string after execution
XPRM_MTP_RFCNT Type implements reference count

XPRM_MTP_COPY Type implements copy: it may be used in assignments
XPRM_MTP_APPND The copy function of this type supports appending
XPRM_MTP_ORSET The copy function of this type can only be used to reset an object
XPRM_MTP_PROB Type is a problem

. The expanded code is available for user defined types only: it corresponds to the actual type code

associated to a user defined type. For instance, assuming the type myset is defined as a set of
integer, getting the type expansion for the code associated to myset will give
XPRM_STR_SET|XPRM_TYP_INT indicating that a reference to an entity of type myset has to be
handled with functions for sets.

Trying to get the expanded code of a module type or the features of a user defined type is an
error: the function returns 1. This can be used to identify module types.

. A user type which expanded code is XPRM_STR_REC is a record type. The public fields of a record

type may be enumerated with XPRlMgetnextfield.

A user type which expanded code is XPRM_STR_PROB is a problem type. The components of a
problem type may be enumerated with XPRlMgetnextpbcomp. Note that problem types are also
implemented as native types. In this case, the flag XPRM_MTP_PROB will be set in the type features.

Fair Isaac Corporation Confidential and Proprietary Information 48

Mosel Run Time Library

Related topics
XPRMgetnextfield, XPRMgetnextpbcomp, XPRMfindtypecode.

Fair Isaac Corporation Confidential and Proprietary Information

49

Mosel Run Time Library

1.2.1 Lists

Lists are an ordered collection of objects. The functions available here allows to get properties of

a list (size and type) as well as enumerate all elements it contains.

XPRMgetlistsize Get the size of a list.
XPRMgetlisttype Get the type of a list.
XPRMgetnextlistelt Get the next element of a list.
XPRMgetprevlistelt Get the previous element of a list.

p-51
p- 52
p- 53
p. 54

Fair Isaac Corporation Confidential and Proprietary Information

50

Mosel Run Time Library

XPRMgetlistsize

Purpose
Get the size of a list.

Synopsis
int XPRMgetlistsize (XPRMlist list);

Argument
list Reference to a list

Return value
Size (=number of elements) of the list.

Further information
This function returns the size, that is the number of elements, of a given list.

Related topics
XPRMgetlisttype.

Fair Isaac Corporation Confidential and Proprietary Information

51

Mosel Run Time Library

XPRMgetlisttype

Purpose
Get the type of a list.

Synopsis
int XPRMgetlisttype (XPRMlist list);

Argument
list Reference to a list

Return value
List type.

Further information
The type of a list is both the type of all elements of the list and the storage class used for the list.
The element type can be extracted using the macro XPRM_TYP (type). Note that a list with no type
(XPRM_TYP_NOT) contains elements of different types. In this case the type of each element has to
be checked when enumerating the content of the list with XPRMgetnextlistelt. The storage class
can be extracted using the macro XPRM_GRP (type). If the bit XPRM_GRP_DYN is set, the list is
dynamic and may be modified.

Related topics
XPRMgetlistsize,XPRMgetnextlistelt.

Fair Isaac Corporation Confidential and Proprietary Information 52

Mosel Run Time Library

XPRMgetnextlistelt

Purpose
Get the next element of a list.

Synopsis

void *XPRMgetnextlistelt(XPRMlist list, void *ref, int *type, XPRMalltypes *value);
Arguments

list Reference to a list

ref Reference pointer or NULL

type Returned type
value Pointer to an area where the result is returned

Return value
Reference pointer for the next call to XPRMgetnextlistelt.

Further information
This function is used to enumerate elements of a list. The second parameter is used to store the
current location in the list; if this parameter is NULL, the first element of the list is returned. This
function returns NULL if it is called with the reference to the last element. Otherwise, the
returned value can be used as the input parameter ref to get the following element and so on.
The function returns in the third argument the type of the object stored in value: this correspond
to the value returned by XPRNMgetlisttype if all elements have the same type.

Related topics
XPRMgetlisttype,XPRMgetprevlistelt.

Fair Isaac Corporation Confidential and Proprietary Information 53

Mosel Run Time Library

XPRMgetprevlistelt

Purpose
Get the previous element of a list.

Synopsis

void *XPRMgetprevlistelt(XPRMlist list, void *ref, int *type, XPRMalltypes *value);
Arguments

list Reference to a list

ref Reference pointer or NULL

type Returned type
value Pointer to an area where the result is returned

Return value
Reference pointer for the next call to XPRMgetnextlistelt.

Further information
This function is used to enumerate elements of a list in reverse order. The second parameter is
used to store the current location in the list; if this parameter is NULL, the last element of the list is
returned. This function returns NULL if it is called with the reference to the first element.
Otherwise, the returned value can be used as the input parameter ref to get the following
element and so on. The function returns in the third argument the type of the object stored in
value: this correspond to the value returned by XPRlMgetlisttype if all elements have the same

type.

Related topics
XPRMgetlisttype,XPRMgetnextlistelt.

Fair Isaac Corporation Confidential and Proprietary Information 54

Mosel Run Time Library

1.2.2 Sets

Sets are used to index arrays: any model using arrays also uses sets even if no set has been
defined explicitly. Note that a range is a special case of a set of integers which contains all
consecutive integers in a given interval.

XPRMgetelsetndx Get the index of a set element. p. 59
XPRMgetelsetval Get the value of an element of a set. p. 58
XPRMgetfirstsetndx Get the first index of a set. p. 60
XPRMgetlastsetndx Get the last index of a set. p.61
XPRMgetsetsize Get the size of a set. p. 56
XPRMgetsettype Get the type of a set. p. 57

Fair Isaac Corporation Confidential and Proprietary Information 55

Mosel Run Time Library

XPRMgetsetsize

Purpose
Get the size of a set.

Synopsis

int XPRMgetsetsize (XPRMset set);
Argument

set Reference to a set

Return value
Size (=number of elements) of the set.

Further information
This function returns the size, that is the number of elements, of a given set.

Related topics
XPRMgetsettype.

Fair Isaac Corporation Confidential and Proprietary Information

56

Mosel Run Time Library

XPRMgetsettype

Purpose
Get the type of a set.

Synopsis

int XPRMgetsettype (XPRMset set);
Argument

set Reference to a set

Return value
Set type.

Further information
The type of a set is both the type of all elements of the set and the storage class used for the set.
The element type can be extracted using the macro XPRM_TYP (type). The storage class can be
extracted using the macro XPRM_GRP (type). If the bit XPRM_GRP_GEN is set then the set is a general
set as opposed to a range set. If the bit XPRM_GRP_DYN is set, the set is dynamic and may be
extended.

Related topics
XPRMgetsetsize.

Fair Isaac Corporation Confidential and Proprietary Information 57

Mosel Run Time Library

XPRMgetelsetval

Purpose
Get the value of an element of a set.

Synopsis

XPRMalltypes *XPRMgetelsetval(XPRMset set, int ind, XPRMalltypes *value);
Arguments

set Reference to a set

ind Index number

value Pointer to an area where the result is returned

Return value
The third argument or NULL.

Further information
This function returns the value of the element of a given set denoted by the given index number.
The result is copied to the argument value.

Related topics
XPRMgetelsetndx.

Fair Isaac Corporation Confidential and Proprietary Information 58

Mosel Run Time Library

XPRMgetelsetndx

Purpose
Get the index of a set element.

Synopsis

int XPRMgetelsetndx(XPRMmodel model, XPRMset set, XPRMalltypes *elt);
Arguments

model Reference to a model

set Reference to a set

elt Reference to the element

Return value
Index of a set element or a negative value if the element is not contained in the set.

Further information
This function returns the index of a given element of a set.

Related topics
XPRMgetfirstsetndx, XPRMgetlastsetndx, XPRMgetelsetndx.

Fair Isaac Corporation Confidential and Proprietary Information

59

Mosel Run Time Library

XPRMgetfirstsetndx

Purpose
Get the first index of a set.

Synopsis
int XPRMgetfirstsetndx (XPRMset set);

Argument
set Reference to a set

Return value
Index of the first element in the set.

Further information
This function returns the index of the first element of a given set.

In a range set, the lowest value (lower range bound) is returned. In a set of strings, the first
element always has the index (= order number) 1. It is recommended to test whether the set is
not empty (using function XPRMgetsetsize) before calling this function.

Related topics
XPRMgetlastsetndx, XPRMgetsetsize.

Fair Isaac Corporation Confidential and Proprietary Information

60

Mosel Run Time Library

XPRMgetlastsetndx

Purpose
Get the last index of a set.

Synopsis
int XPRMgetlastsetndx (XPRMset set);

Argument
set Reference to a set

Return value
Index of the last element in the set.

Further information
This function returns the index of the last element of a given set.

In a range set the highest value (upper range bound) is returned. In a set of strings the index of
the last element always corresponds to the number of elements in the set. It is recommended to
test whether the set is not empty (using function XPRVMgetsetsize) before calling this function.

Related topics
XPRMgetfirstsetndx, XPRMgetsetsize.

Fair Isaac Corporation Confidential and Proprietary Information 61

Mosel Run Time Library

1.2.3 Arrays

In Mosel, arrays are used to store any kind of object, including other arrays or sets. The type of
the array is also the type of the collected objects. The storage class indicates how these objects
are stored in memory. In most cases this information can be ignored as all functions accessing
arrays automatically handle each special case.

The storage class is encoded in two bits:

XPRM_GRP_DYN The array is a dynamic array: there is no range defined for its indexing sets
(i.e. there cannot be any “out of range error” for this array as the indexing
sets may grow on demand).

XPRM_GRP_GEN The array is a general (= dynamic bounded) array: the number of elements
may be augmented up to the range limits specified at its creation.

Typically a “sparse table” uses a storage class of XPRM_GRP_DYN or XPRM_GRP_DYN | XPRM_GRP_GEN
(dynamic or fixed ranges). The Mosel compiler may decide which storage class should be used for
each array: even a “dense table” may be created using a storage class of XPRM_GRP_DYN if the
model does not provide enough information for deciding the actual size of the array at compile
time.

For dynamic arrays one may distinguish between logical and true entries. Assuming an array has
been created with the range 1..5, but only entry 3 has been defined, this array has 5 logical
entries but only a single true entry. This difference is mainly noticeable in the functions provided
for enumerating arrays.

Note that at the library level all arrays are indexed by integers (negative value are allowed). To
use text index values, the conversion from the text to the order number must be performed using
the function XPRMgetelsetndx.

XPRMchkarrind Check whether an index tuple of an array is valid. p.72
XPRMcmpindices Compare two index tuples. p.73
XPRMgetarrdim Get the number of dimensions of an array. p. 63
XPRMgetarrsets Get the index sets of an array. p. 66
XPRMgetarrsize Get the size of an array. p. 65
XPRMgetarrtype Get the type of an array. p. 64
XPRMgetarrval Get the value of an array entry. p. 74
XPRMgetfirstarrentry Get the list of indices of the first entry of an array. p. 67
XPRMgetfirstarrtruentry Get the list of indices of the first true entry of an array. p. 70
XPRMgetlastarrentry Get the list of indices of the last entry of an array. p. 68
XPRMgetnextarrentry Get the list of indices of the next entry of an array. p. 69
XPRMgetnextarrtruentry Get the list of indices of the next true entry of an array. p. 71

Fair Isaac Corporation Confidential and Proprietary Information 62

Mosel Run Time Library

XPRMgetarrdim

Purpose
Get the number of dimensions of an array.

Synopsis
int XPRMgetarrdim(XPRMarray array) ;

Argument
array Reference to an array

Return value
Number of dimensions of the array.

Further information
This function returns the number of dimensions of a given array.

Related topics
XPRMgetarrsets, XPRMgetarrsize, XPRMgetarrtype.

Fair Isaac Corporation Confidential and Proprietary Information

63

Mosel Run Time Library

XPRMgetarrtype

Purpose
Get the type of an array.

Synopsis
int XPRMgetarrtype (XPRMarray array);

Argument
array Reference to an array

Return value
Type of the array.

Further information
This function returns the type of a given array. The type of an array designates both the type of

all entries of the array and the storage class used for that array. The entry’s type can be extracted

using the macro XPRM_TYP (type). The storage class can be extracted using the macro
XPRM_GRP (type). The macro XPRM_ARR_DENSE can be used to characterize a “dense table” (e.g.
XPRM_GRP (type) == XPRM_ARR_DENSE).

Related topics
XPRMgetarrdim, XPRMgetarrsets, XPRMgetarrsize.

Fair Isaac Corporation Confidential and Proprietary Information

64

Mosel Run Time Library

XPRMgetarrsize

Purpose
Get the size of an array.

Synopsis
int XPRMgetarrsize(XPRMarray array);

Argument
array Reference to an array

Return value
Size (= total number of true entries) of the array.

Further information
This function returns the total number of true entries contained in the array.

Related topics
XPRMgetarrdim, XPRMgetarrsets, XPRMgetarrtype.

Fair Isaac Corporation Confidential and Proprietary Information

65

Mosel Run Time Library

XPRMgetarrsets

Purpose
Get the index sets of an array.

Synopsis
void XPRMgetarrsets(XPRMarray array, XPRMset sets[]);
Arguments
array Reference to an array
sets n-tuple of set references where n is the number of dimensions of the array array

Further information
This function returns in the parameter sets the list of sets that index the array array. Each set
corresponds to one dimension of the array.

Related topics
XPRMgetarrdim, XPRMgetarrsize, XPRMgetarrtype.

Fair Isaac Corporation Confidential and Proprietary Information

66

Mosel Run Time Library

XPRMgetfirstarrentry

Purpose
Get the list of indices of the first entry of an array.

Synopsis

int XPRMgetfirstarrentry(XPRMarray array, int indices[]);
Arguments

array Reference to an array

indices n-tuple (n is the dimension of array array) where the index values of the first logical
element in the array are returned

Return value
0 if executed succesfully, a positive value otherwise.

Further information
This function returns the index tuple of the first entry of a given array.

Related topics
XPRMgetfirstarrtruentry, XPRMgetlastarrentry, XPRMgetnextarrentry.

Fair Isaac Corporation Confidential and Proprietary Information

67

Mosel Run Time Library

XPRMgetlastarrentry

Purpose
Get the list of indices of the last entry of an array.

Synopsis
int XPRMgetlastarrentry(XPRMarray array, int indices[]);

Arguments

array Reference to an array

indices n-tuple (n is the dimension of array array) where the index values of the last logical
element in the array are returned

Return value
0 if executed succesfully, a positive value otherwise.

Further information
This function returns the index tuple of the last entry in the given array.

Related topics
XPRMgetfirstarrentry, XPRMgetfirstarrtruentry.

Fair Isaac Corporation Confidential and Proprietary Information

68

Mosel Run Time Library

XPRMgetnextarrentry

Purpose
Get the list of indices of the next entry of an array.

Synopsis

int XPRMgetnextarrentry(XPRMarray array, int indices[]);
Arguments

array Reference to an array

indices n-tuple (nis the dimension of array array); the input values denote the tuple for which
the next (logical) array entry is required; the returned values are the next array entry

Return value
0 if executed succesfully, a positive value otherwise (end of array).

Further information
This function returns the index tuple of the entry following the given tuple in the given array.
The next entry in an array is determined by enumerating the last index of the tuple first. The
parameter indices serves for input and return values at the same time. It is modified by the
function to return the tuple corresponding to the next array entry after the tuple that has been
input.

Related topics
XPRMgetfirstarrentry, XPRMgetfirstarrtruentry, XPRMgetnextarrtruentry.

Fair Isaac Corporation Confidential and Proprietary Information 69

Mosel Run Time Library

XPRMgetfirstarrtruentry

Purpose
Get the list of indices of the first true entry of an array.

Synopsis
int XPRMgetfirstarrtruentry(XPRMarray array, int indices[]);

Arguments

array Reference to an array

indices n-tuple (n is the dimension of array array) where the index values of the first defined
element in the array are returned

Further information
If the given array has a fixed size (dense array), this function behaves like XPRMgetfirstarrentry.
With a dynamic array, this function returns the index tuple of the first true entry.

Related topics
XPRMgetfirstarrentry, XPRMgetlastarrentry, XPRMgetnextarrentry.

Fair Isaac Corporation Confidential and Proprietary Information 70

Mosel Run Time Library

XPRMgetnextarrtruentry

Purpose
Get the list of indices of the next true entry of an array.

Synopsis
int XPRMgetnextarrtruentry(XPRMarray array, int indices[]);

Arguments
array Reference to an array

indices n-tuple (nis the dimension of array array), the input values denote the tuple for which
the next true array entry is required; the returned values are the next array entry

Return value
0 if executed succesfully, a positive value otherwise (end of array) .

Further information
If the given array has a fixed size (dense array), this function behaves like XPRVMgetnextarrentry.
With a dynamic array, this function returns the index tuple of the next true entry.

Related topics
XPRMgetfirstarrentry, XPRMgetfirstarrtruentry, XPRMgetnextarrentry.

Fair Isaac Corporation Confidential and Proprietary Information 71

Mosel Run Time Library

XPRMchkarrind

Purpose
Check whether an index tuple of an array is valid.

Synopsis
int XPRMchkarrind(XPRMarray array, int indices[]);
Arguments
array Reference to an array
indices n-tuple of indices where n is the dimension of array array

Return value
0 if the index tuple lies within the ranges for which the array is defined, a positive value
otherwise.

Further information
This function checks whether the given index tuple lies within the range bounds of an array.

Related topics
XPRMcmpindices.

Fair Isaac Corporation Confidential and Proprietary Information

72

Mosel Run Time Library

XPRMcmpindices

Purpose
Compare two index tuples.

Synopsis

int XPRMcmpindices(int nbdim, int ind1[], int ind2[]);
Arguments

nbdim number of dimensions (= size of tuples ind1 and ind2)

ind1l, ind2 Index tuples of size nbdim

Return value

-1 Tuple ind1 comes before tuple ind2
0 Tuples are identical
1 Tuple ind2 comes before tuple ind1

Further information
This function compares two index tuples.

Related topics
XPRMchkarrind.

Fair Isaac Corporation Confidential and Proprietary Information

Mosel Run Time Library

XPRMgetarrval

Purpose
Get the value of an array entry.

Synopsis
int XPRMgetarrval(XPRMarray array, int indices[], void *adr);
Arguments
array Reference to an array
indices n-tuple of indices where n is the number of dimensions of the array array
adr Pointer to the area where the value of the array entry denoted by the index-tuple is
returned.

Return value
0 if executed successfully, a positive value otherwise.

Further information

1. This function returns the value of an array entry that corresponds to a given tuple of indices for a
given array. The address passed must reference an area large enough to receive data of the
array's type: for instance, for an array of reals (type = XPRM_TYP_REAL) the adr parameter must be
of type doublex.

2. The returned value is 0 (integer, real or Boolean) or NULL (other types) if the requested entry does
not exist when referencing a dynamic array.

Related topics
XPRMgetfirstarrentry, XPRMgetfirstarrtruentry, XPRMgetnextarrentry,
XPRMgetnextarrtruentry.

Fair Isaac Corporation Confidential and Proprietary Information 74

Mosel Run Time Library

1.2.4 Records

Records are a special kind of user defined types that associate to a an entity a collection of fields.
Thanks to the following functions one can enumerate these fields and get the value of a specific
field of given record.

XPRMgetfieldval Get the value of a field of a record. p. 77

XPRMgetnextfield Get the next field of a record type. p. 76

Fair Isaac Corporation Confidential and Proprietary Information 75

Mosel Run Time Library

XPRMgetnextfield

Purpose
Get the next field of a record type.

Synopsis
void *XPRMgetnextfield(XPRMmodel model, void *ref, int code, const char **name, int
*type, int *number) ;

Arguments
model Reference to a model
ref Reference pointer or NULL

code Code of the record type
name Field name

type Field type

number Field number (in the record)

Return value
Reference pointer for the next call to XPRMgetnextfield.

Further information

1. This function is used to enumerate fields of a record type. The second parameter is used to store
the current location in the list of fields; if this parameter is NULL, the first field of the record is
returned. This function returns NULL if it is called with the reference to the last field. Otherwise,
the returned value can be used as the input parameter ref to get the following field and so on.

2. The name, type and number are the returned field properties. The field number is used by the
function XPRMgetfieldval to retrieve the value of the corresponding field in an object of this
record type.

Related topics
XPRMgetfieldval.

Fair Isaac Corporation Confidential and Proprietary Information 76

Mosel Run Time Library

XPRMgetfieldval

Purpose
Get the value of a field of a record.

Synopsis
ynop void XPRMgetfieldval (XPRMmodel model, int code, void *ref, int number, XPRMalltypes
*value) ;
Arguments
model Reference to a model
ref Reference to the record
code Type code of the record

number Field number (in the record)
value Pointer to an area where the field value is returned
Further information

The field number must be obtained from the function XPRMgetnextfield. Its value is valid as long
as the model is loaded in memory.

Related topics
XPRMgetnextfield.

Fair Isaac Corporation Confidential and Proprietary Information 77

Mosel Run Time Library

1.2.5 Problems

Like all statements of a model, the routines presented in this section are executed in the context
of an active problem. By default, at the beginning of the processing of a model an initial problem

is created: the “main problem”. After the end of the execution of a model, this particular

problem is active but a different problem can be selected using the routine ¥PRMselectprob. The
following functions enable the user to access various information related to linear constraints
and decision variables created or used in the context of the active problem. With the exception of
the XPRMexportprob function, all operations in this section require the problem to be loaded into

an optimizer either explicitly (e.g. procedure ‘loadprob’ of the module “mmxprs”) or implicitly by

using an optimization operation (e.g. procedure ‘maximize’ of the module “mmxprs”) in the

model. If no problem is available (model not run, no constraint created by the model or problem

not loaded in an optimizer) a specific default value is returned by each function.

XPRMexportprob Export the active problem to a file. p. 80
XPRMgetact Get the activity value of a linear constraint. p. 87
XPRMgetcsol Get the solution value of a linear constraint. p. 83
XPRMgetctrnum Get the row number of a linear constraint. p. 89
XPRMgetdual Get the dual value of a linear constraint. p. 85
XPRMgetobjval Get the objective function value. p. 81
XPRMgetprobstat Get the problem status of a model. p.79
XPRMgetrcost Get the reduced cost value of a variable. p. 84
XPRMgetslack Get the slack value of a linear constraint. p. 86
XPRMgetvarnum Get the column number of a decision variable. p. 88
XPRMgetvsol Get the solution value of a variable. p. 82
XPRMselectprob Select the active problem. p. 90
Fair Isaac Corporation Confidential and Proprietary Information 78

Mosel Run Time Library

XPRMgetprobstat

Purpose
Get the problem status of a model.

Synopsis
int XPRMgetprobstat (XPRMmodel model) ;

Argument
model Reference to a model

Return value
Problem status.

Further information
This function returns the status of the active problem of the given model, or 0 if no problem is
available.

The problem status is bit encoded as follows:
XPRM_PBCHG Problem loaded in the optimizer (if any) is not valid

XPRM_PBSOL A solution is available

The solution status can be obtained by checking the XPRM_PBRES bits of the problem status.
Possible values are:
XPRM_PBOPT optimal solution found

XPRM_PBUNF optimization unfinished

XPRM_PBINF problem is infeasible

XPRM_PBUNB problem is unbounded

XPRM_PBOTH optimization failed (any other cause)

Related topics
XPRMgetobjval.

Fair Isaac Corporation Confidential and Proprietary Information

79

Mosel Run Time Library

XPRMexportprob

Purpose
Export the active problem to a file.

Synopsis
int XPRMexportprob(XPRMmodel model, const char *options,
const char *fname, XPRMlinctr obj);
Arguments
model Reference to a model

options Format of the output. Possible value are:
nn LP output format, minimization (default)

"m" MPS output format
"p" Maximization (default is minimization)
ngt Use scrambled names
fname File name, may be NULL
obj Objective to use for optimization, or NULL (no objective) or XPRM_KEEPOBJ (last

objective used)

Return value

0 if executed successfully, XPRM_RT_ERROR if no problem is available or XPRM_RT_IOERR in case of 10
error.

Further information
This function exports the active problem to an MPS or LP format matrix file. If the filename is set
to NULL, the output is printed to the console. If the filename is given without an extension, the
extension .mps for MPS files or .1p for LP format files is added. The output format options can be
combined in a single string (e.g. "sp"). This function is disabled (i.e. it succeeds but performs no
operation) when Mosel is running in trial mode.
When exporting matrices in MPS format any possibly specified lower bounds on semi-continuous
or semi-continuous integer variables are lost. LP format matrices maintain the complete
information.

Fair Isaac Corporation Confidential and Proprietary Information 80

Mosel Run Time Library

XPRMgetobjval

Purpose
Get the objective function value.

Synopsis
double XPRMgetobjval(XPRMmodel model) ;

Argument
model Reference to a model

Return value
Objective function value.

Further information
This function returns the value of the objective function if the problem has been solved
successfully.

Related topics
XPRMgetprobstat.

Fair Isaac Corporation Confidential and Proprietary Information

81

Mosel Run Time Library

XPRMgetvsol

Purpose
Get the solution value of a variable.

Synopsis

double XPRMgetvsol(XPRMmodel model, XPRMmpvar var);
Arguments

model Reference to a model

var Reference to a decision variable

Return value
Solution value or 0.

Further information
This function returns the value of a given variable if the problem has been solved successfully (LP:
optimal LP solution or 0, global: last integer solution or 0).

Related topics
XPRMgetrcost.

Fair Isaac Corporation Confidential and Proprietary Information 82

Mosel Run Time Library

XPRMgetcsol

Purpose
Get the solution value of a linear constraint.

Synopsis

double XPRMgetcsol(XPRMmodel model, XPRMlinctr ctr);
Arguments

model Reference to a model

ctr Reference to a linear constraint

Return value
Solution value.

Further information
This function returns the evaluation of the given contraint using the current solution (this
corresponds to the Mosel getsol function applied to a linear constraint).

Related topics
XPRMgetdual, XPRMgetslack.

Fair Isaac Corporation Confidential and Proprietary Information

83

Mosel Run Time Library

XPRMgetrcost

Purpose
Get the reduced cost value of a variable.

Synopsis

double XPRMgetrcost(XPRMmodel model, XPRMmpvar var);
Arguments

model Reference to a model

var Reference to a decision variable

Return value
Reduced cost value or 0.

Further information
This function returns the reduced cost value of a given variable if the problem has been solved
successfully (otherwise 0).

Related topics
XPRMgetvsol.

Fair Isaac Corporation Confidential and Proprietary Information

84

Mosel Run Time Library

XPRMgetdual

Purpose
Get the dual value of a linear constraint.

Synopsis

double XPRMgetdual (XPRMmodel model, XPRMlinctr ctr);
Arguments

model Reference to a model

ctr Reference to a linear constraint

Return value
Dual value or 0.

Further information
This function returns the dual value of a given linear constraint if the problem has been solved
successfully and the constraint is contained in the problem (otherwise 0).

Related topics
XPRMgetact, XPRMgetcsol, XPRMgetslack.

Fair Isaac Corporation Confidential and Proprietary Information

85

Mosel Run Time Library

XPRMgetslack

Purpose
Get the slack value of a linear constraint.

Synopsis

double XPRMgetslack(XPRMmodel model, XPRMlinctr ctr);
Arguments

model Reference to a model

ctr Reference to a linear constraint

Return value
Slack value or 0.

Further information
This function returns the slack value of a given linear constraint if the problem has been solved
successfully (otherwise 0).

Related topics
XPRMgetcsol, XPRMgetdual.

Fair Isaac Corporation Confidential and Proprietary Information

86

Mosel Run Time Library

XPRMgetact

Purpose
Get the activity value of a linear constraint.

Synopsis

double XPRMgetact (XPRMmodel model, XPRMlinctr ctr);
Arguments

model Reference to a model

ctr Reference to a linear constraint

Return value
Activity value.

Further information
This function returns the activity value of a given linear constraint if the problem has been solved
successfully.

Related topics
XPRMgetcsol, XPRMgetslack.

Fair Isaac Corporation Confidential and Proprietary Information 87

Mosel Run Time Library

XPRMgetvarnum

Purpose
Get the column number of a decision variable.

Synopsis

int XPRMgetvarnum(XPRMmodel model, XPRMmpvar var);
Arguments

model Reference to a model

var Reference to a variable

Return value
The column number (> 0) of the decision variable, or a negative value.

Further information
This function returns the column number of a decision variable. A negative value is returned if no
problem is available or if the variable does not belong to the active problem.

Related topics
XPRMgetctrnum.

Fair Isaac Corporation Confidential and Proprietary Information 88

Mosel Run Time Library

XPRMgetctrnum

Purpose
Get the row number of a linear constraint.

Synopsis

int XPRMgetctrnum(XPRMmodel model, XPRMlinctr ctr);
Arguments

model Reference to a model

ctr Reference to a linear constraint

Return value
The row number (> 0) of the linear constraint, or a negative value.

Further information
This function returns the row number of a linear constraint. A negative value is returned if no
problem is available or if the constraint does not belong to the active problem.

Related topics
XPRMgetvarnum.

Fair Isaac Corporation Confidential and Proprietary Information

89

Mosel Run Time Library

XPRMselectprob

Purpose
Select the active problem.

Synopsis

int XPRMselectprob(XPRMmodel model, int typcode, void *prob);
Arguments

model Reference to a model

typcode Type code of the object problem (0 to activate the main problem)
prob Reference to the object problem (ignored if typcode is 0)

Return value
0 if successful, 1 otherwise.

Further information

1. This function activates a problem: after a successful call, all functions accessing problem
information will refer to the selected problem. The function will fail if the requested problem has
not been initialised or is empty (for instance before execution of the model).

2. This function cannot be used while the model is running, in particular it will fail if called from the
debugger interface (see Section 1.3).

Related topics
XPRMfindident.

Fair Isaac Corporation Confidential and Proprietary Information 90

Mosel Run Time Library

1.2.6 Miscellaneous

XPRMcb_sendctrl Send a control character to an initialization stream. p. 100
XPRMcb_sendint Send an integer value to an initialization stream. p. 97
XPRMcb_sendreal Send a real value to an initialization stream. p. 98
XPRMcb_sendstring Send a text string value to an initialization stream. p. 99
XPRMdate2jdn Convert a date into a Julian Day Number (JDN). p. 93
XPRMfreememblk Release a memory block allocated by the mem: 10 driver. p. 92
XPRMjdn2date Convert a Julian Day Number (JDN) into a calendar date. p. 94
XPRMpathcheck Expand a path name and check whether it can be accessed. p. 96
XPRMtime Get the current date and time. p. 95
Fair Isaac Corporation Confidential and Proprietary Information 91

Mosel Run Time Library

XPRMfreememblk

Purpose
Release a memory block allocated by the mem: 10 driver.

Synopsis
int XPRMfreememblk (XPRMmemblk *memblk) ;

Argument
memblk Reference to a memory block

Return value
0 if successful, 1 otherwise.

Further information
This function can be used to release a memory block allocated by the "mem:" 10 driver used with
an XPRMmemblk object (see Section 1.5.3)

Fair Isaac Corporation Confidential and Proprietary Information

92

Mosel Run Time Library

XPRMdate2jdn

Purpose
Convert a date into a Julian Day Number (JDN).

Synopsis

int XPRMdate2jdn(int year,int month, int day);
Arguments

year Year number

month Month number (1-12)

day Day number (1-31)

Return value
The JDN corresponding to the provided date.

Further information

The value returned by this function corresponds to the number of days elapsed since 1/1/1970.

Related topics
XPRMjdn2date,XPRMtime.

Fair Isaac Corporation Confidential and Proprietary Information

93

Mosel Run Time Library

XPRMjdn2date

Purpose
Convert a Julian Day Number (JDN) into a calendar date.

Synopsis

void XPRMjdn2date(int jdn, int *year,int *month, int *day);
Arguments

jdn The Julian Day Number to decode

year Returned year number

month Returned month number (1-12)

day Returned day number (1-31)
Further information

This function decodes a date represented using a JDN as returned by the functions XPRMdate2jdn
or XPRMtime.

Related topics
XPRMdate2jdn,XPRMtime.

Fair Isaac Corporation Confidential and Proprietary Information 94

Mosel Run Time Library

XPRMtime

Purpose
Get the current date and time.

Synopsis
void XPRMtime(int *jdn, int *t,int *tz);
Arguments
jdn Returned Julian Day Number
t Returned current time (in milliseconds)
tz Time zone. Possible values are:
XPRM_TIME_LOCAL Time is expressed in local time
XPRM_TIME_UTC Time is expressed in Coordinated Universal Time (UTC)

Return value
0 if successful, 1 otherwise.

Further information

1. This function returns the current date as a JDN (number of days since 1/1/1970) and a number of
milliseconds since midnight. The JDN may be decoded using the function jdn2date.

2. The date returned by this function can be converted to a Unix time (type time_t) using the
expression: jdn*86400+t/1000. Similarly a Windows file time (type FILETIME) can be obtained
using: ((__int64) jdn+134774)*864000000000i64+(__int64)t*10000i64).

Related topics
XPRMjdn2date,XPRMdate2jdn.

Fair Isaac Corporation Confidential and Proprietary Information 95

Mosel Run Time Library

XPRMpathcheck

Purpose
Expand a path name and check whether it can be accessed.

Synopsis

int XPRMpathcheck(const char *path,char *fullpath,int maxlen,int acc);
Arguments

path Path (or file name) to be processed

fullpath Buffer to return the expanded path

maxlen Size of fullpath

acc Operation to perform. Possible values:

XPRM_RCHK_READ Check whether path or file can be read

XPRM_RCHK_WRITE Check whether path or file can be written
XPRM_RCHK_NOCHK Only expand the path without testing access

Return value
0 if successful, 1 if access is denied and a negative value in case of error (e.g. buffer too small).

Further information

1. This routine returns an absolute path to the file name it gets as input and optionally checks
whether access is allowed according to the current restrictions.

2. The string "tmp: " beginning a path name will be replaced by the path to the Mosel temporary
directory.

Related topics
XPRMsetdefworkdir, XPRMsetrestrictions.

Fair Isaac Corporation Confidential and Proprietary Information

96

Mosel Run Time Library

XPRMcb_sendint

Purpose
Send an integer value to an initialization stream.

Synopsis
int XPRMcb_sendint (XPRMcbinit cbinit,int i,int flush);
Arguments
cbinit Stream context
i Integer value to send
flush If 0, the data will be processed when the queue of tokens is full, otherwise processing

occurs immediately.

Return value

0 Normal termination

1 All tokens have been processed and no more data is expected

2 No more data is expected but the queue of tokens is not empty
-1 An error occurred

Further information

1. A boolean value can also be sent using this routine: 1 for true and 0 for false.

2. This function can only be used from a callback stream (see Section 1.5.2) during the execution of
an initializations from block.

3. If the flush argument is 0, the information sent is queued and the function returns 0. The queue
is flushed when it is full or if the f1ush argument is non-zero.

Related topics
XPRMcb_sendreal,XPRMcb_sendstring,XPRMcb_sendctrl.

Fair Isaac Corporation Confidential and Proprietary Information 97

Mosel Run Time Library

XPRMcb_sendreal

Purpose
Send a real value to an initialization stream.

Synopsis
int XPRMcb_sendreal (XPRMcbinit cbinit,double r,int flush);
Arguments
cbinit Stream context
T Real value to send
flush If 0, the data will be processed when the queue of tokens is full, otherwise processing

occurs immediately.

Return value

0 Normal termination

1 All tokens have been processed and no more data is expected

2 No more data is expected but the queue of tokens is not empty
-1 An error occurred

Further information

1. This function can only be used from a callback stream (see Section 1.5.2) during the execution of
an initializations from block.

2. If the flush argument is 0, the information sent is queued and the function returns 0. The queue
is flushed when it is full or if the f1ush argument is non-zero.

Related topics
XPRMcb_sendint,XPRMcb_sendstring,XPRMcb_sendctrl.

Fair Isaac Corporation Confidential and Proprietary Information 98

Mosel Run Time Library

XPRMcb_sendstring

Purpose
Send a text string value to an initialization stream.

Synopsis

int XPRMcb_sendstring (XPRMcbinit cbinit,const char *text, int len,int flush);
Arguments

cbinit Stream context

text Text string value to send

len Length of the string (or -1)

flush If 0, the data will be processed when the queue of tokens is full, otherwise processing
occurs immediately.

Return value

0 Normal termination

1 All tokens have been processed and no more data is expected

2 No more data is expected but the queue of tokens is not empty
-1 An error occurred

Further information

1. This function can only be used from a callback stream (see Section 1.5.2) during the execution of
an initializations from block.

2. If the f1ush argument is 0, the information sent is queued and the function returns 0. The queue
is flushed when it is full or if the f1ush argument is non-zero.

Related topics
XPRMcb_sendint,XPRMcb_sendreal,XPRMcb_sendctrl.

Fair Isaac Corporation Confidential and Proprietary Information 99

Mosel Run Time Library

XPRMcb_sendctrl

Purpose
Send a control character to an initialization stream.

Synopsis
int XPRMcb_sendctrl (XPRMcbinit cbinit,int ctrl,int flush);
Arguments
cbinit Stream context
ctrl Control character code. Possible values:
XPRM_CBC_SKIP Skip the next record (same as * in an ASCII file)
XPRM_CBC_OPENLST Begin a list of values (same as [in an ASCII file)
XPRM_CBC_CLOSELST End a list of values (same as] in an ASCII file)
XPRM_CBC_OPENNDX Begin a list of indices (same as (in an ASCII file)
XPRM_CBC_CLOSENDX End a list of indices (same as) in an ASCII file)
flush If 0, the data will be processed when the queue of tokens is full, otherwise processing

occurs immediately.

Return value

0 Normal termination

1 All tokens have been processed and no more data is expected

2 No more data is expected but the queue of tokens is not empty
-1 An error occurred

Further information

1. This function can only be used from a callback stream (see Section 1.5.2) during the execution of

an initializations from block.

2. If the flush argument is 0, the information sent is queued and the function returns 0. The queue

is flushed when it is full or if the f1lush argument is non-zero.

Related topics
XPRMcb_sendint,XPRMcb_sendreal,XPRMcb_sendstring.

Fair Isaac Corporation Confidential and Proprietary Information

100

Mosel Run Time Library

1.3 Debugger interface

The Mosel debugger interface provides the necessary functionality for controling the execution
of a program (execution step by step, breakpoints, access to local symbols, stack frame change)
that may be used, for instance, to implement an interactive debugger. This interface relies on
debugging information stored in the bim file which is generated at compile time depending on
compilation options (see Section 2.1):

m correspondence between a global symbol and its value: this information is available as long
as the source is not compiled with option "s";

m correspondence between a local symbol (e.g. index of a loop or variable local to a function)
and its value: this information is generated when model is compiled with option "g";

m correspondence between source code and compiled code: the source location information is
also constructed if option "g" was used for compilation;

m tracing facility to enable the Mosel virtual machine to suspend execution at a specified
location (breakpoint) or execute one statement at a time: as opposed to the previous
features, this information requires insertion of instructions in the compiled code (and may
alter the execution speed of a model). To enable this extension, option "G" has to be used
when compiling the source model.

A model to be run through the debugger interface should be compiled with flag "g" or "G".

For the functions described below, the source location is indicated by means of line indices: each
of these indices is associated to a statement, a data structure declaration or an end of subroutine
(just before it returns). The function XPRMdbg_getlocation makes the correspondence between a
line index and an actual source location (i.e. file name and line number). The first statement of
the program has always index 0 and the total number of indices can be obtained using
XPRMdbg_getnblndx. It is also possible to retrieve all indices at once using XPRMdbg_getlndx. The
index of the first statement of a function is returned by XPRMdbg_findproclndx.

The execution of a program normally terminates when an error occurs or simply when all
instructions have been run. Using the function XPRMdbg_setbrkp, it is possible to specify locations
in the program where execution must be suspended. From these breakpoints, one can examine
current value of variables, install new breakpoints then continue or cancel execution for instance.

Before procedures (or functions) are called during execution of a program, the execution context
of the system (mainly local symbols and a reference to the next instruction) is saved on top of a
stack. This way, after the routine returns, the state of the machine can be restored and the
execution resumed. When the execution of the program is suspended, it may be interesting to
change the current position in the stack, or stack frame, in order to view variables that are not
defined at the current level because they are declared by the calling procedure. This can be
achieved using function XPRMdbg_setstacklev.

In order to use the debugger interface, the program has to be run with the function
XPRMdbg_runmod: this special version of XPRMrunmod requires an extra parameter specifying a
function reference, Mosel calls this function whenever the program has to be interrupted. If
there is no error condition, the return value of the function decides whether execution should
continue or not. During the interruption, most functions listed in this manual can be used to
retrieve information about the current state of the program. Moreover, XPRVMfindident returns
references to locally defined symbols when called from the debugger interface.

XPRMdbg_clearbrkp Clear a breakpoint at the given line index. p. 111

XPRMdbg_findproclndx Find the line index of a procedure or function. p. 109

Fair Isaac Corporation Confidential and Proprietary Information 101

Mosel Run Time Library

XPRMdbg_getlndx Retrieve all line indices. p. 106
XPRMdbg_getlocation Get a source file location associated to a given line index. p. 108
XPRMdbg_getnblndx Get the number of line indices. p. 107
XPRMdbg_getnextlocal Get the next local identifier in the dictionary. p. 105
XPRMdbg_runmod Run a model through the debugger interface. p. 103
XPRMdbg_setbrkp Set a breakpoint at the given line index. p. 110
XPRMdbg_setstacklev Set the current stack frame to the specified level. p. 112
Fair Isaac Corporation Confidential and Proprietary Information 102

Mosel Run Time Library

XPRMdbg_runmod

Purpose
Run a model through the debugger interface.

Synopsis
int XPRMdbg_runmod(XPRMmodel model, int *returned, const char *parlist,
int (MM_RTC *dbgcb) (void *dctx, int vmstat, int lndx), void *dbgctx);

Arguments
model Reference to a model
returned Pointer to an area where the result value is returned
parlist String composed of model parameter initializations separated by commas, may be
NULL
dbgcb user defined debugger callback
dbgctx debug context: it is used as the first argument of dbgcb

Return value
XPRM_RT_OK Normal termination
XPRM_RT_ERROR An error occured during execution
XPRM_RT_MATHERR Mathematical error (e.g. division by zero)
XPRM_RT_IOERR Input/output error (e.g. cannot open file)
XPRM_RT_STOP Bit set if execution has been interrupted

Fair Isaac Corporation Confidential and Proprietary Information 103

Mosel Run Time Library

Further information

1.

The parameter parlist may be used to initialize the model parameters of the model/program
(e.g. "PAR1=12,PAR2="tutu’"). The parameter returned receives the result of the execution (e.g.
parameter value of the “exit” procedure). The bit XPRM_RT_STOP is set if the execution of the
model has been interrupted by a call to the function XPRMstoprunmod.

. If the function pointer dbgcb if NULL XPRMdbg_runmod behaves like XPRMisrunmod; otherwise

function dbgcb is called whenever the model is interrupted (breakpoint, error or function
XPRMstoprunmod called). The first argument, dctx, is the value of dbgctx; the second, vmstat, is the
virtual machine status (i.e. XPRM_RT_x*) and the last argument, 1ndx, is the line index
corresponding to the statement being executed (asynchronous interruption) or to be executed
(breakpoint). In this context the virtual machine status may take value XPRM_RT_BREAK if
interruption is due to a breakpoint and value XPRM_RT_NIFCT if the program was executing a
native function when interruption occurred.

. If a breakpoint at line -1 has been set (see XPRMdbg_setbrkp) the debugger callback dbgcb is called

just before program termination when no error has occurred. In this case the virtual machine
status takes value XPRM_RT_ENDING for a normal termination and value XPRM_RT_EXIT if the last
statement is a call to procedure exit.

If the program is interrupted because of an error, the return value of dbgcb is ignored, otherwise
it indicates how to continue execution. If vmstat is not XPRM_RT_NIFCT, the following values can
be returned:

XPRM_DBG_STOP terminate execution

XPRM_DBG_NEXT stop before the next statement skipping function calls
XPRM_DBG_STEP stop before the next statement stepping into function calls
XPRM_DBG_CONT continue execution

j>0 stop before the statement at line index j

. If the interruption occurs during the execution of a native function (for instance when the

optimizer is solving a problem), vmstat is XPRM_RT_NIFCT and execution of the function can be
canceled (execution continues after the NI call) by returning XPRM_DBG_STOP (in this case the
debugger callback is called again just after the native function call completes). Other values
returned by dbgcb imply the continuation of the execution.

Related topics

XPRMrunmod, XPRMisrunmod, XPRMstoprunmod.

Fair Isaac Corporation Confidential and Proprietary Information 104

Mosel Run Time Library

XPRMdbg_getnextlocal

Purpose
Get the next local identifier in the dictionary.

Synopsis

const char *XPRMdbg_getnextlocal (XPRMmodel model, void **ref);
Arguments

model Reference to a model

ref Pointer to an area where current location is stored

Return value
An identifier of the symbol table or NULL if all local identifiers have been returned.

Further information
This function is used in the same way as XPRVMgetnextident except that it returns the identifiers
locally defined in the current context. These symbols are not reported by XPRVMgetnextident.

Related topics
XPRMgetnextident, XPRMfindident.

Fair Isaac Corporation Confidential and Proprietary Information

105

Mosel Run Time Library

XPRMdbg_getindx

Purpose
Retrieve all line indices.

Synopsis
void XPRMdbg_getlndx(XPRMmodel model, int *nbl, int *lines, int *nbf, const char
**fnames) ;
Arguments
model Reference to a model
nbl Pointer to an area where the number of indices is returned (can be NULL)
lines Pointer to an area where the encoded line numbers are returned (can be NULL)
nbf Pointer to an area where the number of file names is returned (can be NULL)

fnames Pointer to an area where the file names are returned (can be NULL)

Further information

1. If no debugging information is available (e.g. program has not been compiled with option "G")
nbl takes value -1 and nbf is set to 0.

2. lines and fnames can be NULL: in this case the function still returns the sizes of these arrays.

3. Each entry of the lines array represents at the same time a line number (coded on 24 bits) and a
file number (coded on 8bits) that is a reference in the fnames array. Macros XPRM_DBGL_LINE and
XPRM_DBGL_FILE can be used to extract these references from the encoded index.

Related topics
XPRMdbg_getnblndx, XPRMdbg_findproclndx.

Fair Isaac Corporation Confidential and Proprietary Information 106

Mosel Run Time Library

XPRMdbg_getnbindx

Purpose
Get the number of line indices.

Synopsis
int XPRMdbg_getnblndx (XPRMmodel model);

Argument
model Reference to a model

Return value
Number of line indices or -1.

Further information

1. When a program is compiled with option "g" or "G", each statement in the source code is

associated with a line index in the bim file. This function returns the total number of line indices

stored: a line index ranges between 0 and XPRMdbg_getnblndx ()-1.

2. If no debugging information is included in the bim file, this function return -1.

Related topics

XPRMdbg_getlndx,XPRMdbg_getlocation, XPRMdbg_findproclndx.

Fair Isaac Corporation Confidential and Proprietary Information

107

Mosel Run Time Library

XPRMdbg_getlocation

Purpose
Get a source file location associated to a given line index.

Synopsis
int XPRMdbg_getlocation(XPRMmodel model, int 1lndx, int *line, const char **fname);

Arguments
model Reference to a model
1ndx Line index, -1 for current location or -2 for the last location of the model
line Pointer to an area where the line number is returned
fname Pointer to an area where the file name is returned

Return value
0 if successful, 1 otherwise (invalid parameters)

Further information

1. This funtion returns the source location (file name and line number) corresponding to a given line

index. If the provided index is -1 and an execution context is available, the function returns
information related to the statement being executed. If this value is -2, the location of the last
statement is returned.

2. If parameter fname is NULL, the function returns in 1ine the current line index (i.e. the value of
1ndx or its updated value if it was given as a negative number).

3. If the returned line number is 0, the machine is currently executing a portion of the code for
which there is no debugging information (i.e. a package compiled without option -g or -G). In
this case the fname information corresponds to the package name.

Related topics
XPRMdbg_getnblndx, XPRMdbg_getlndx, XPRMdbg_findproclndx.

Fair Isaac Corporation Confidential and Proprietary Information

108

Mosel Run Time Library

XPRMdbg_findprocindx

Purpose
Find the line index of a procedure or function.

Synopsis

int XPRMdbg_findproclndx (XPRMmodel model, XPRMproc proc);
Arguments

model Reference to a model

proc Reference to a procedure or function

Return value
Line index of the first statement of the routine, 0 if proc is NULL or -1 in case of error.

Further information
This funtion returns the line index corresponding to the first statement of the provided
procedure or function (as returned by XPRNMfindident).

Related topics
XPRMdbg_getnblndx, XPRMdbg_getlndx, XPRMdbg_getlocation.

Fair Isaac Corporation Confidential and Proprietary Information

109

Mosel Run Time Library

XPRMdbg_setbrkp

Purpose
Set a breakpoint at the given line index.

Synopsis

int XPRMdbg_setbrkp(XPRMmodel model, int 1lndx) ;
Arguments

model Reference to a model

1ndx Line index

Return value
0 if successful, 1 otherwise (invalid parameters)

Further information

1. After a breakpoint has been established, execution of the program is interrupted just before the
specified location. A breakpoint remains active as long as it is not removed.

2. Breakpoints can be set before execution of the program but are automatically deleted after the
execution terminates. A breakpoint may be explicitly removed by calling the function
XPRMdbg_clearbrkp.

3. The line index value -1 is a special code to establish a breakpoint just before the execution
terminates (when there is no error). The debugger function is therefore called on the last
statement of the program or at a call to the exit function.

Related topics
XPRMdbg_clearbrkp, XPRMdbg_getnblndx.

Fair Isaac Corporation Confidential and Proprietary Information 110

Mosel Run Time Library

XPRMdbg_clearbrkp

Purpose
Clear a breakpoint at the given line index.

Synopsis
int XPRMdbg_clearbrkp(XPRMmodel model, int 1lndx);

Arguments

model Reference to a model
1ndx Line index or -1 for all breakpoints

Return value
0 if successful, 1 otherwise (invalid parameters)

Further information
This function deletes a breakpoint previously set using XPRMdbg_setbrkp. If no breakpoint was
installed at the given location, the function has no effect; if the line index is -1, all defined
breakpoints are cleared.

Related topics
XPRMdbg_setbrkp, XPRMdbg_getnblndx.

Fair Isaac Corporation Confidential and Proprietary Information

111

Mosel Run Time Library

XPRMdbg_setstacklev

Purpose
Set the current stack frame to the specified level.

Synopsis
int XPRMdbg_setstacklev(XPRMmodel model, int level);

Arguments
model Reference to a model
level Stack level

Return value
Line index or -1 if the level does not exist

Further information
This function changes the current stack frame of the program: the initial level is 0, positive values
indicate higher levels. The line index returned corresponds to the location of the function call or
the current location if the level is 0. If no location can be found for the selected stack frame the
value INT_MAX is returned. Changing the stack frame modifies the behaviour of XPRMfindident
regarding local symbols: symbols returned are those of the specified stack level and not those of
the interruption (level 0).

Related topics
XPRMdbg_runmod, XPRMfindident.

Fair Isaac Corporation Confidential and Proprietary Information 112

Mosel Run Time Library

1.4 Handling of modules

The functionalities of Mosel may be extended by using native libraries or modules implemented

as dynamic shared objects (DSO). The module manager of Mosel keeps a list of all loaded

modules and maintains a list of references for each of them. Using the following functions it is
possible to know which modules are currently loaded and what are the provided features, and to
access the values of their control parameters.

XPRMautounloaddso

XPRMfinddso

XPRMflushdso

XPRMgetdsoannotations

XPRMgetdsoparam
XPRMgetdsopath
XPRMgetdsoprop
XPRMgetnextdso
XPRMgetnextdsoconst
XPRMgetnextdsodep
XPRMgetnextdsoparam
XPRMgetnextdsoproc
XPRMgetnextdsotype
XPRMgetnextiodrv
XPRMpreloaddso
XPRMregstatdso

XPRMsetdsopath

Disable/enable automatic unloading of modules.
Find a DSO descriptor from a module name.
Unload unused dynamic shared objects.

Retrieve annotations defined by a module.

Get the current value of a control parameter.

Get the directory list where DSO files are searched for.

Get a property of a dynamic shared object.

Get next dynamic shared object.

Enumerate constants of a module.

Enumerate dependencies of a module.

Enumerate control parameters of a module.
Enumerate procedures and functions of a module.
Enumerate native types of a module.

Get the next 10 driver in the list of available drivers.
Explicitly load the named module.

Declare a module as static.

Set the directory list where DSO files are stored.

T © T T T T T T T T T T T T T T O

117
. 118
. 119
. 120
121
. 115
. 128
. 122
. 123
. 124
. 126
. 127
. 125
. 129
. 130
. 116
. 114

Fair Isaac Corporation Confidential and Proprietary Information

113

Mosel Run Time Library

XPRMsetdsopath

Purpose

Synopsis

Set the directory list where DSO files are stored.

void XPRMsetdsopath(const char *paths);

Argument

paths List of directories

Further information

By default, Mosel looks for its modules in the directories defined by the environment variable
MOSEL_DSO and then in a path deduced from the location (rtdir) of the Mosel runtime library:

"rtdir\..\dso" Under Windows if rtdir terminates by "\bin" and "rtdir\..\dso" exists or

"rtdir/../dso" On Unix compatible systems if rtdir terminates by "/1ib" and "rtdir/../dso"
exists or

"rtdir/dso" if this directory exists or
"rtdir" if none of the above rules apply
This function may be used to replace the directory list defined by MOSEL_DSO. Note that the

directory separator is “:' under Unix (for example,
"/opt/Mosel/dso:/tmp") and ’;’ under Win32 (for example, "E: \Mosel\Dso;C:\Temp").

Related topics

XPRMgetlibpath,XPRMgetdsopath.

Fair Isaac Corporation Confidential and Proprietary Information

114

Mosel Run Time Library

XPRMgetdsopath

Purpose
Get the directory list where DSO files are searched for.

Synopsis
int XPRMgetdsopath(char *path, int len);

Arguments
path Array of chars where the path is returned
len The size of the array path

Return value
0 if successful, 1 if path is truncated, -1 in case of error.

Further information
This function returns the path currently used by Mosel for searching modules. Note that the
returned path includes both the default search path (deduced from the location of the Mosel
runtime library) and the path set up either via the environment variable MOSEL_DSO or the
function XPRMsetdsopath.

Related topics
XPRMsetdsopath.

Fair Isaac Corporation Confidential and Proprietary Information

Mosel Run Time Library

XPRMregstatdso

Purpose
Declare a module as static.

Synopsis
int XPRMregstatdso(const char *name, int (*dsoinit) (XPRMnifct, int *,
int *, XPRMdsointer *x*));

Arguments
name Name of the module
dsoinit Address of the module initialization function

Return value
0 if successful, 1 otherwise.

Further information
This function declares a module as static. If parameter dsoinit is NULL, the module is loaded and
will not be unloaded until the termination of the program. Otherwise the module is
implemented in the current program (instead of being an external library) and dsoinit is the
initialization function of the module (see Mosel Native Interface Reference Manual).

Fair Isaac Corporation Confidential and Proprietary Information 116

Mosel Run Time Library

XPRMautounloaddso

Purpose
Disable or enable automatic unloading of dynamic shared objects.

Synopsis

void XPRMautounloaddso(int yesno) ;

Argument
yesno Disable if 0, enable otherwise

Further information
Modules are loaded by the system whenever they are required. By default, each unused module
is automatically unloaded after a fixed period of time. Using this function it is possible to disable
this automatic unloading; in which case, unused modules have to be unloaded explicitly using
XPRMflushdso.

Related topics
XPRMflushdso.

Fair Isaac Corporation Confidential and Proprietary Information 117

Mosel Run Time Library

XPRMfinddso

Purpose
Find a DSO descriptor from a module name.

Synopsis
XPRMdsolib XPRMfinddso(const char *libname);

Argument
libname Name of the module to find

Return value
A reference to a DSO descriptor or NULL if the requested module has not been loaded.

Further information
This function returns the DSO pointer of a module that has been loaded previously.

Related topics
XPRMgetnextdso.

Fair Isaac Corporation Confidential and Proprietary Information

118

Mosel Run Time Library

XPRMflushdso

Purpose
Unload unused dynamic shared objects.

Synopsis
void XPRMflushdso(void);

Further information
Each unused module is automatically unloaded after a fixed period of time. This function forces
the manager to unload all unused modules.

Related topics
XPRMautounloaddso.

Fair Isaac Corporation Confidential and Proprietary Information 119

Mosel Run Time Library

XPRMgetdsoannotations

Purpose
Retrieve annotations defined by a module.

Synopsis
int XPRMgetdsoannotations (XPRMdsolib dso, const char *prefix, const char **ann, int
maxann) ;
Arguments
dso Reference to a dynamic shared object loaded by Mosel

prefix Filtering prefix
ann Array of size maxann where to store the annotations (can be NULL)
maxann Size of ann (to get up to maxann/2 annotations)

Return value
Size of the array required to get all annotations (two times the number of found annotations).

Further information

1. This function retrieves the annotations defined by a module using a prefix as a filter (e.g. use
"doc." to get all the documentation annotations). The result is stored in the provided array: each
annotation occupies 2 entries in the array (the first one for the name of the annotation and the
following one for its value).

2. The returned value may exceed maxann (but no more than maxann entries are recorded in the
array). To get the required size for ann the function may be called with a NULL array.

Related topics
XPRMgetannotations.

Fair Isaac Corporation Confidential and Proprietary Information 120

Mosel Run Time Library

XPRMgetdsoparam

Purpose
Get the current value of a control parameter.

Synopsis
int XPRMgetdsoparam(XPRMmodel model, XPRMdsolib dso, const char *name,
int *type, XPRMalltypes *value);
Arguments
model Reference to a model
dso Reference to a dynamic shared object loaded by Mosel or NULL

name Name of the control parameter (lower case only)
type Returned type of the control parameter
value Returned value of the control parameter

Return value
0 if successful, 1 otherwise.

Further information

1. This function returns the current value of a control parameter of the given module in the context
of the given model. This function requires that the model has been executed and uses the
requested module.

2. If the argument dso is NULL, the function looks for the value of a Mosel parameter (like
"realfmt").

3. If both arguments dso and model are NULL, the function looks for the default value of a Mosel
parameter (like "realfmt").

4. The type can be decoded using the macro XPRM_TYP. Moreover, the bits XPRM_CPAR_READ and
XPRM_CPAR_WRITE are set to indicate if the parameter can be read or written respectively (using
getparam and setparam).

Fair Isaac Corporation Confidential and Proprietary Information 121

Mosel Run Time Library

XPRMgetnextdso

Purpose
Get next dynamic shared object.

Synopsis
XPRMdsolib XPRMgetnextdso(XPRMdsolib dso);
Argument
dso Reference to a dynamic shared object loaded by Mosel or NULL

Return value
Next dynamic shared object loaded by Mosel or NULL.

Further information
This function returns the next module held in the list of modules loaded by Mosel. If the given
modaule is at the end of the list, the function returns NULL, if the input parameter is set to NULL,
the function returns the first module in the list.

Related topics
XPRMfinddso.

Fair Isaac Corporation Confidential and Proprietary Information 122

Mosel Run Time Library

XPRMgetnextdsoconst

Purpose

Get the next constant in the list of constants defined by the given module.

Synopsis

void *XPRMgetnextdsoconst(XPRMdsolib dso, void *ref, const char **name,

Arguments
dso
ref
name
type
value

Return value

int *type, XPRMalltypes *value);

Reference to a dynamic shared object loaded by Mosel
Reference pointer or NULL

Returned name of the constant

Returned type of the constant

Returned value of the constant

Reference pointer for the next call to XPRMgetnextdsoconst.

Further information

This function returns the next constant defined by the given module. The second parameter is
used to store the current location in the table of constants; if this parameter is NULL, the first

constant of the table is returned. This function returns NULL if it is called with the reference to the

last constant defined by the given module. Otherwise, the returned value can be used as the
input parameter ref to get the following constant and so on. The returned information about

type and value of the constant can be decoded in the same way as for the model identifiers (see
XPRMfindident).

Related topics

XPRMgetnextdsoparam, XPRMgetnextdsoproc, XPRMgetnextdsotype, XPRMgetnextiodrv.

Fair Isaac Corporation Confidential and Proprietary Information

123

Mosel Run Time Library

XPRMgetnextdsodep

Purpose
Get the next required module of a module.

Synopsis

void *XPRMgetnextdsodep(XPRMdsolib dso, void *ref, const char **name);
Arguments

dso Reference to a dynamic shared object loaded by Mosel

ref Reference pointer or NULL

name Returned name of the module

Return value
Reference pointer for the next call to XPRMgetnextdsodep.

Further information
This function returns the next dependency of a module: module dependencies are the other
modules it requires. The second parameter is used to store the current location in the table of
dependencies; if this parameter is NULL, the first dependency of the table is returned. This
function returns NULL if it is called with the reference to the last dependency defined by the given
module. Otherwise, the returned value can be used as the input parameter ref to get the
following dependency and so on.

Fair Isaac Corporation Confidential and Proprietary Information 124

Mosel Run Time Library

XPRMgetnextdsotype

Purpose
Get the next type in the list of types defined by the given module.

Synopsis
void *XPRMgetnextdsotype(XPRMdsolib dso, void *ref, const char **name,
unsigned int *props);

Arguments
dso Reference to a dynamic shared object loaded by Mosel
ref Reference pointer or NULL

name Returned name of the type
props Returned properties of the type (may be NULL)

Return value
Reference pointer for the next call to XPRMgetnextdsotype.

Further information
This function returns the name and properties of the next type defined by the given module. The
type properties corresponds to the information returned by function XPRVMgettypeprop. The
second parameter is used to store the current location in the table of types; if this parameter is
NULL, the first type of the table is returned. This function returns NULL if it is called with the
reference to the last type defined by the given module. Otherwise, the returned value can be
used as the input parameter ref to get the following type and so on.

Related topics

XPRMgetnextdsoconst, XPRMgetnextdsoparam, XPRMgetnextdsoproc, XPRMgetnextiodrv,
XPRMgettypeprop.

Fair Isaac Corporation Confidential and Proprietary Information 125

Mosel Run Time Library

XPRMgetnextdsoparam

Purpose
Get the next control parameter in the list of the given module.

Synopsis
void *XPRMgetnextdsoparam(XPRMdsolib dso, void *ref, const char **name,
const char **desc, int *type);

Arguments
dso Reference to a dynamic shared object loaded by Mosel or NULL
ref Reference pointer or NULL

name Returned name of the control parameter
desc Returned description of the control parameter
type Returned type of the control parameter

Return value
Reference pointer for the next call to XPRMgetnextdsoparam.

Further information
This function returns the next control parameter of the given module. If the argument dso is
NULL, the function returns Mosel control parameters. The second parameter is used to store the
current location in the table of control parameters; if this parameter is NULL, the first control
parameter of the table is returned. This function returns NULL if it is called with the reference to
the last parameter of the given module. Otherwise, the returned value can be used as the input
parameter ref to get the following control parameter and so on. The type can be decoded using
the macro XPRM_TYP. Moreover, the bits XPRM_CPAR_READ and XPRM_CPAR_WRITE are set to indicate
if the parameter can be read or written respectively (using getparam and setparam). The
parameter desc is a textual description of the function of the parameter — this information is not
necessarily available (that is, it may be NULL or an empty string). Note that not all modules
implement the required functionality for enumerating control parameters.

Related topics
XPRMgetnextdsoconst, XPRMgetnextdsoproc, XPRMgetnextdsotype XPRMgetnextiodrv.

Fair Isaac Corporation Confidential and Proprietary Information 126

Mosel Run Time Library

XPRMgetnextdsoproc

Purpose
Get the next subroutine in the list of the given module.

Synopsis
void *XPRMgetnextdsoproc(XPRMdsolib dso, void *ref, const char **name,
const char **partyp, int *nbpar, int *type);

Arguments
dso Reference to a dynamic shared object loaded by Mosel
ref Reference pointer or NULL
name Returned name of the routine (procedure or function)

partyp Returned string describing the parameters of the routine
nbpar Returned number of parameters expected by the routine
type Returned type of the result of the routine

Return value
Reference pointer for the next call to XPRMgetnextdsoproc.

Further information
This function returns the next subroutine defined by the given module. The second parameter is
used to store the current location in the table of subroutines; if this parameter is NULL, the first
subroutine of the table is returned. This function returns NULL if it is called with the reference to
the last subroutine defined by the given module. Otherwise, the returned value can be used as
the input parameter ref to get the following subroutine and so on. The type and parameter
string can be decoded in the same way as for the model procedures and functions (see
XPRMgetprocinfo) except that native functions may return objects of native type. In this case, the
function type is XPRM_TYP_EXTN and the parameter string partyp begins with the name of the
function type followed by "’ (e.g. "mytype: Imytypel" is the signature of a function of type
‘'mytype’ expecting an object of type ‘mytype’ as parameter. Note that the same subroutine name
may be returned several times if a subroutine has been defined with different types of
parameters (overloading).

Related topics
XPRMgetnextdsoconst, XPRMgetnextdsoparam, XPRMgetnextdsotype, XPRMgetnextiodrv.

Fair Isaac Corporation Confidential and Proprietary Information 127

Mosel Run Time Library

XPRMgetdsoprop

Purpose
Get a property of a dynamic shared object.

Synopsis
int XPRMgetdsoprop(XPRMdsolib dso, int prop, XPRMalltypes *value);
Arguments
dso Reference to a module loaded by Mosel
prop Property to retrieve. Possible values:
XPRM_PROP_NAME Module name
XPRM_PROP_ID Internal number of the module
XPRM_PROP_VERSION Version number
XPRM_PROP_SYSCOM Identity of the provider
XPRM_PROP_NBREF Number of loaded models that use the module
XPRM_PROP_PATH Path to the actual module file
XPRM_PROP_PRIORITY Priority of the module
XPRM_PROP_NBTYPES Number of types

value Pointer to an area where the model property is returned

Further information
This function returns information about a given module. The type of the property (specified via
the prop argument) decides how the argument value is interpreted: the field string is used for
NAME, SYSCOM and PATH; and integer for the other properties. The returned version number is
coded as an integer, for example, 1.2.3 is coded as 1002003. The module is currently not in use if
the property NBREF is 0.

Fair Isaac Corporation Confidential and Proprietary Information 128

Mosel Run Time Library

XPRMgetnextiodrv

Purpose
Get the next 10 driver in the list of available drivers.

Synopsis
void *XPRMgetnextiodrv(void *ref, const char **name,
const char **module, const char **info);

Arguments
ref Reference pointer or NULL
name Name of the driver (may be NULL)
module Name of the module publishing the driver (may be NULL)
info Information about the driver (may be NULL)

Return value
Reference pointer for the next call to XPRMgetnextiodrv.

Further information
This function returns the next 10 driver in the table of currently available drivers. The first
parameter is used to store the current location in the table; if this parameter is NULL, the first
driver of the table is returned. This function returns NULL if it is called with the reference to the
last driver available. Otherwise, the returned value can be used as the input parameter ref to get
the following driver and so on.
Note that internal drivers have a NULL module name and the default driver has no name (i.e. name
is an empty string). Information returned via info parameter corresponds to the string stored as
the XPRM_IOCTRL_INFO operation for the driver. If this operation is not defined, return value is
NULL.

Related topics
XPRMgetnextdsoconst, XPRMgetnextdsoparam, XPRMgetnextdsoproc, XPRMgetnextdsotype.

Fair Isaac Corporation Confidential and Proprietary Information 129

Mosel Run Time Library

XPRMpreloaddso

Purpose
Explicitly load the named module.

Synopsis
XPRMdsolib XPRMpreloaddso(const char *libname);

Argument
libname Name of the module to load

Return value
A reference to a DSO descriptor if the module has been loaded successfully or NULL.

Further information
Mosel loads modules on demand when they are required by the models in core memory.
However, it is possible to force the system to load a module using this function. If the module is
already in memory, no action is performed and the corresponding DSO pointer is returned.

Related topics
XPRMisrunmod, XPRMrunmod.

Fair Isaac Corporation Confidential and Proprietary Information 130

Mosel Run Time Library

1.5 Using IO drivers for data exchange

Mosel comes with a default set of 10 drivers which are used as data source/destination. The
selection of the driver is achieved via the file name in use: for instance file name "myfile" is a
physical file handled by the operating system but "mem:myfile" is a block of memory managed by
the mem driver. 10 drivers are mainly used to interface specific data sources with Mosel (like odbc
from the mmodbc module). In this context, each data source may require a dedicated driver that
can be implemented in a user module through the Mosel NI (refer to the Mosel NI Reference
Manual for further explanation). Drivers may also be employed to easily exchange information
between the application running the Mosel Libraries and a model. In particular the predefined
drivers cb, mem and raw are specifically designed for this purpose.

1.5.1 sysfd driver

Thanks to this driver, a file descriptor provided by the operating system may be used in place of a
file. The general syntax of a file name for the sysfd driver is:

sysfd:0Sfd

where 0Sfd is a numerical file descriptor (Posix) or a file handle (Windows). File descriptors are
usually returned by C functions open or fileno (from a C-stream obtained with fopen) on Posix
systems. Under Windows, file handles can be created using CreateFile or obtained with
_get_osfhandle (from a C file descriptor) for instance. When a program starts, 3 files are
automatically opened for input, output and errors; they are respectively associated to file
numbers 0,1 and 2 (this applies to both Posix systems and Windows). Mosel uses these file
decriptors as default streams.

Example:

XPRMsetdefstream(NULL,XPRM_F_ERROR, "sysfd:1"); /* redirect error to output stream */

1.5.2 cb driver

This driver allows using a function as a file. The general syntax of a file name for the cb driver is:

cb:funcaddr[/refvall]

where funcaddr is the address of the callback function and the optional parameter refval is a
pointer (both references must be expressed in hexadecimal). Depending on the type of stream to
manage (i.e. a general stream or a for an initializations block) a specific function type as to be
provided.

1.5.2.1 Handling of general streams

The expected function must have the following prototype:

long XPRM_RTC func(XPRMmodel model, void *ref, char *buf, unsigned long size);

Whenever data needs to be transferred, Mosel calls this function indicating the location (buf) and
the size (size) of the buffer to use. The parameter ref is the information provided to Mosel
during the opening of the file (refval above). The model reference may be NULL if the stream is
used directly by Mosel (for instance for compilation). When the stream is open for writing, the
return value of the function is ignored. If the corresponding output stream is open in text mode,
the function is called at each end of line and the buffer can be seen as a NULL terminated
character string (the size does not include the terminating character). When used for reading, the

Fair Isaac Corporation Confidential and Proprietary Information 131

Mosel Run Time Library

function should return the number of bytes actually copied into the buffer (0 means end of file).

Example:

long XPRM_RTC simpleout(XPRMmodel model, void *ref, char *buf,
unsigned long size)

{

printf ("0OUT: %.*s",(int)size,buf);

return 0;

}

char fname[32];

sprintf (fname, "cb:%p", simpleout);
XPRMsetdefstream(NULL, XPRM_F_ERROR, fname); /* redirect error str. to ’simpleout’ */

1.5.2.2 Handling of initializations blocks

In the case of an initializations block, the expected function must be of the following form:

int XPRM_RTC func(XPRMcbinit cbinit, void *ref,const char *label, int type, XPRMalltypes *obj);

When executing an initializations from block, the function is called once for each label with
the label to be initialized (1abel), its type (type) and a reference to the object (obj). The
parameter ref is the information provided to Mosel during the opening of the file (refval
above). The function must then send to Mosel the data to be used for the initialization of the
object using routines ¥PRMcb_sendint, XPRMcb_sendreal, XPRMcb_sendstring and
XPRMcb_sendctrl. The 3 first functions provide the basic type values while the last one is used to
structure the data stream (i.e. delimit a list of array indices or a collection of values) in a similar
fashion as in an ASCll initialization file.

Example:

int XPRM_RTC initfrom(XPRMcbinit cbinit, void *ref,const char *label,
int type, XPRMalltypes *ref)
{

int i;

if (strcmp(label,"I")==0) /* 1:10 x/
{
XPRMcb_sendint (cbinit,10,0)
}
else if(strcmp(label,"S")==0) /* S:[1 2 3] */
{
XPRMcb_sendctrl(cbinit,XPRM_CBC_OPENLST,0) ;
for(i=1;i<=3;i++)
XPRMcb_sendreal (cbinit, (double)i,0);
XPRMcb_sendctrl(cbinit,XPRM_CBC_CLOSELST,0);
¥
else if(strcmp(label,"A")==0) /* A:[(1) "a"] */
{
XPRMcb_sendctrl(cbinit,XPRM_CBC_OPENLST,0) ;
XPRMcb_sendctrl(cbinit,XPRM_CBC_OPENNDX,0) ;
XPRMcb_sendint (cbinit,1,0);
XPRMcb_sendctrl(cbinit,XPRM_CBC_CLOSENDX,O0) ;
XPRMcb_sendstring(cbinit,"a",l,O);
XPRMcb_sendctrl(cbinit,XPRM_CBC_CLOSELST,O0) ;
}
}
/* The associated Mosel code:
declarations
I:integer

Fair Isaac Corporation Confidential and Proprietary Information 132

Mosel Run Time Library

S:set of real

A:array(range) of string
end-declarations
initializations from INITFILE
ISA
end-initialisations

*/

Similarly, when executing an initializations to block, the function is called once for each label
with the object reference, its type and associated label (in this case the first parameter is NULL).
The user function can then inspect the object using the usual routines of the Mosel Runtime
Library.

1.5.3 menm driver

With this driver, a block of memory is used as data source. Three different types of blocks are
supported: named blocks can be used only from a model during its execution, are identified by a
label and their allocation is dynamic. The second type uses a block of memory already allocated:
it is characterized by an address and a size. With the third form the file name corresponds to a
reference to a dedicated data structure to hold the properties of a memory block managed by
Mosel.

The general syntax of a file name for the mem driver accessing a named block is:

mem:label [/minsize[/incstep]]

where label is an identifier whose first character is a letter and minsize an optional initial
amount of memory to be reserved (size is expressed in bytes, in kilobytes with suffix "k" or in
megabytes with suffix "m"). The memory block is allocated dynamically and resized as necessary.
By default the size of the memory block is increased by pages of 4 kilobytes: the optional
parameter incstep may be used to change this page size (i.e. the default setting is "label/0/4k").
The special value 0 modifies the allocation policy: instead of being increased of a fixed amount,
the block size is doubled. In all cases unused memory is released when the file is closed.

When a named memory block is used in a model, it is possible to access the block of memory
allocated by the driver by searching for the label in the model’s dictionary: the function
XPRMfindident returns a reference to an object of structure XPRM_STR_MEM that describes the
location and size of the memory block.

The general syntax of a file name for the mem driver accessing a fixed block is:

mem:addr/size[/actualsize]

where addr and size identify the memory block (the pointer must be expressed in hexadecimal).
Optionally a pointer to a size_t value may be provided (actualsize expressed in hexadecimal):
when the stream is open for writing, this variable receives the size actually used by the operation
(its value thus ranges between 0 and size). Moreover, if the stream is open in append mode,
writing starts after the location indicated by this value. When the stream is open for reading, the
value is used in place of size if it is smaller than this upper limit.

Example:

char blk[2048];
char fnamel[40];
size_t actualsize;

sprintf (fname, "mem:%p/%u/%p", blk, (int)sizeof (blk), &actualsize);
XPRMcompmod (NULL, "mymodel", fname, NULL); /* compile model to memory */
printf ("BIM data uses %u bytes.\n", actualsize);

mod=XPRMloadmod (fname, NULL); /* load BIM file from memory */

Fair Isaac Corporation Confidential and Proprietary Information 133

Mosel Run Time Library

The last form is similar to first one except that the name of the block is replaced by an address
prefixed by the & symbol:

mem:&addr [/minsize[/incstep]]
where addr is a reference (expressed in hexadecimal) to an XPRMmemblk data structure:

typedef struct
{
void *ref; /* Base address of the block */
size_t size; /* Size of the block */
} XPRMmemblk;

When the block is used for the first time, fields of the structure must be cleared: Mosel handles
(re)allocation of the memory block when writing to the corresponding memory file. The function
XPRMfreememblk can be used to release the memory allocated through this 10 driver (deleting the
file from the Mosel code has the same effect).

Example:

XPRMmemblk memblk;
char fname[40];

sprintf (fname, "mem:&%p", &memblk) ;

memset (&memblk,0,sizeof (XPRMmemblk)) ;

XPRMcompmod (NULL, "mymodel", fname, NULL); /* compile model to memory */
mod=XPRMloadmod (fname, NULL); /* load BIM file from memory */
XPRMfreememblk (&memblk) /* release BIM file memory */

1.5.4 raw driver

The raw driver provides an implementation of the “initializations blocks” in binary mode: instead
of translating information from/to text format, data is kept in its raw representation. Typically
this driver will be combined with the mem driver in order to exchange arrays of data between the
model and an application through memory without translation. The general syntax of a file
name for the raw driver is:

raw: [noindex,align,noalign,append,all,slength=#]

When using the raw driver as a file for an initializations block, no actual data location is provided
at the beginning of the block. The driver uses each label as a file name for locating data.

Example:

initializations from "raw:noindex"
t as "datafile.bin"

r as "mem:0x1234/456"
end-initializations

Data transfer is achieved without conversion: 4 bytes for an integer, 8 bytes for a real, 1 byte for a
Boolean, strings are of fixed size or just an address, external types are translated to strings (if
“tostr” is available for the type) and anything else has the size of an address that is 4 or 8 bytes
depending on the architecture. The option slength specifies the fixed length of strings, default
value for this parameter is 16 (shorter strings are padded with 0 characters, longer strings are
cut). The special value 0 implies that the address of the string is used.

If option append is specified, files open for writing are open in append mode.

Transfer of scalar is straightforward and sets are treated as a collection of consecutive scalars. The
handling of arrays varies depending on the options: by default, each array element is preceded
by its indices (for instance t(1,2) is stored or read as 1,2,t(1,2)). If option noindex is in use, only

Fair Isaac Corporation Confidential and Proprietary Information 134

Mosel Run Time Library

values are listed and if option all has been given, all elements of dynamic arrays are listed (by
default: only existing elements).

The driver aligns data according to the processor architecture requirements assuming the starting
address provided is aligned properly (for instance on Sparc processors real values [or doubles] are
aligned on 8 bytes boundaries). Thanks to this property, it is safe to map data exchanged using
this driver with the corresponding structure in the C language.

Example:

declarations
a: array(integer,boolean) of real
end-declarations

! the above declaration can be mapped to the following C-structure:

! struct {

! int ndx1

! char ndx2

! double a_ndx1_ndx2 };

! This structure uses 13 bytes with an Intel processor and 16 on a Sparc

This behavior may be changed by using the align and noalign options (for instance for saving
binary data to physical files, alignment is not necessary and uses more memory).

Options may be specified for each label individually: they have to be given as a list preceding the
actual filename.

Example: the following model:

parameters

DAT= nn

RES=I| n

end-parameters
declarations
d:array(string) of real
r:array(l..10) of real
end-declarations
initializations from "raw:"
d as "slength=0,mem:"+DAT ! load data from memory location defined by DAT
end-initializations

initializations to "raw:"

r as "noindex,mem:"+RES ! save results in memory location defined by RES
end-initializations

can be used with the following C-source:

char params[128];
struct { const char *ndx; double v; } d[I={{"one",10}, {"two",0.5}};
double r[10];

sprintf (params, "DAT=’%p/%u’, RES=’Yp/%u’", d, sizeof(d), r, sizeof(r));
XPRMrunmod (mod, &result, params);

1.5.5 bin driver

Like the raw driver, the bin driver provides an implementation of the “initializations blocks” in
binary mode. However, thanks to a structured and architecture independent data format the bin
driver can handle cross platform files containing all records of an initialisations block. An
application can generate and decode files using this format with the help of the bindrv library.
Refer to the documentation of this library for further explanation.

Fair Isaac Corporation Confidential and Proprietary Information 135

CHAPTER 2

Mosel Model Compiler Library

2.1 Compilation

The Mosel Model Compiler (xprm_mc) Library contains the compiler of Mosel. The main function
provided performs the compilation of a source model file into the corresponding binary model
(bim) file. Note that xprm_mc requires the library xprm_rt to be present and even a program using
only the XPRMcompmod function must initialize Mosel with the function XPRMinit.

Programs using the Model Compiler Library must include the header file xprm_mc.h.

Note that all text strings handled by functions of this library are encoded in UTF-8. It is therefore
required to convert text strings to alternate encodings when exchanging data with other libraries
not working with UTF-8. In particular the C library supports either wide characters (wchar_t type)
or the default system encoding (that depends on the localisation of the system). These encoding
conversions can be achieved with the help of the XPRNLS library (please refer to the XPRNLS
Reference Manual for further details).

XPRMcompmod, XPRMcompmodsec Compile a model source file. p. 137

XPRMexecmod Compile, load then run a model source file. p. 139

Fair Isaac Corporation Confidential and Proprietary Information 136

Mosel Model Compiler Library

XPRMcompmod, XPRMcompmodsec

Purpose
Compile a model source file.

Synopsis
int XPRMcompmod(const char *options, const char *srcfile, const char *dstfile, const
char *userc);
int XPRMcompmodsec(const char *options, const char *srcfile, const char *dstfile,
const char *userc, const char *passfile, const char *privkey, const char

xkfile);
Arguments
options Compilation options (may be NULL, options may be separated by spaces or >’
symbols):
ng Include debugging information: in the case of a run time error
during the execution of the model the location of the error in the
source file may be indicated
"G Include tracing information: with this option the model can be run
through the debugger for an execution step by step
ngt Strip symbols: secure the bim file by removing all private symbol
names used in the source model
"p" parse only: stop after the syntax analysis of the source file, do not
compile (no file generated)
nx" extract messages for translation (generation of a POT file in place
of a BIM file)
Myt Emit a warning message each time a symbol is implicitly declared
up" Generate and record documentation annotations
"bx=prefix" Package prefix (can be quoted with single or double quotes)
"ix=prefix" Include source prefix (can be quoted with single or double quotes)
ngn Sign the bim file
nE" Encrypt the bim file
ug" The argument pass is a file name (not the password itself)
ny Accept to load signed packages only if their signature can be
verified
uTn Accept to load only signed packages with a valid signature
scrfile Name of the source file
dstfile Name of the destination file (may be NULL)
userc Commentary text that will be saved as is at the beginning of the output file (may be
NULL)

passfile Password or password file (for encryption with a password)
privkey Private key file (for bim file signing)
kfile File of public keys (for encryption with public keys)

Return value
0 Function executed sucessfully
Parsing phase has failed (syntax error or file access error)
Error in compilation phase (a semantic error has been detected)
Error writing the output file

Sw N -

License error (compiler not authorized)

Fair Isaac Corporation Confidential and Proprietary Information 137

Mosel Model Compiler Library

Further information

1. This function compiles a given model source file into a binary model file (bim file) that is required
as input to function XPRM1oadmod for executing the model. The second form of the function will
be used to generate encrypted and/or signed bim files.

2. The source file name may contain environment variable references using the notation ${varname}
(for example,
'${XPRESSDIR}/examples/mymodel’) that are expanded to generate the actual name. If no
destination file name is provided, the output file takes the same name as the source file with the
extension .bim. Note that the empty string (i.e. "") is interpreted as the standard input for
srcfile and as the standard output for dstfile.

3. The argument kfile is a list of public key files (i.e. each line of the file is a key file name): when
encrypting a file, the encryption is performed for each of the listed public keys such that the bim
file can be decrypted by any of the corresponding private keys.

4. When prefixes provided via bx or ix are quoted with double quotes, backslashes are interpreted
such that special characters can be included in the string. It is therefore required to double this
symbol when it has to be included (e.g. *bx="C:
mydir"’).

Related topics
XPRMloadmod, XPRMrunmod, XPRMdbg_runmod.

Fair Isaac Corporation Confidential and Proprietary Information 138

Mosel Model Compiler Library

XPRMexecmod

Purpose
Compile, load then run a model source file.

Synopsis
int XPRMexecmod(const char *options, const char *srcfile, const char *parlist, int
*returned, XPRMmodel *rtmod);
Arguments
options Compilation options (may be NULL)
scrfile Name of the source file

parlist String composed of model parameter initializations separated by commas, may be
NULL

returned Pointer to an area where the result value is returned
rtmod Pointer to an area where the model pointer is returned (may be NULL)

Return value

<0 Compilation failed
0 Function executed sucessfully
>0 An error occured during model execution

Further information
This function calls in sequence XPRMcompmod, XPRM1oadmod, and then XPRVMrunmod (no bim file is
generated). If parameter rtmod is not NULL, this pointer is initialized with the model reference.
Otherwise, the model is unloaded after execution.

Related topics
XPRMcompmod, XPRMloadmod, XPRMrunmod, XPRMunloadmod.

Fair Isaac Corporation Confidential and Proprietary Information

139

APPENDIX A

Contacting FICO

FICO provides clients with support and services for all our products. Refer to the following
sections for more information.

Product support

FICO offers technical support and services ranging from self-help tools to direct assistance with a
FICO technical support engineer. Support is available to all clients who have purchased a FICO
product and have an active support or maintenance contract. You can find support contact
information on the Product Support home page (www.fico.com/support).

On the Product Support home page, you can also register for credentials to log on to FICO Online
Support, our web-based support tool to access Product Support 24x7 from anywhere in the world.
Using FICO Online Support, you can enter cases online, track them through resolution, find
articles in the FICO Knowledge Base, and query known issues.

Please include "Xpress’ in the subject line of your support queries.

Product education

FICO Product Education is the principal provider of product training for our clients and partners.
Product Education offers instructor-led classroom courses, web-based training, seminars, and
training tools for both new user enablement and ongoing performance support. For additional
information, visit the Product Education homepage at www.fico.com/en/product-training or
email producteducation@fico.com.

Product documentation

FICO continually looks for new ways to improve and enhance the value of the products and
services we provide. If you have comments or suggestions regarding how we can improve this
documentation, let us know by sending your suggestions to techpubs@fico.com.

Fair Isaac Corporation Confidential and Proprietary Information 140

Contacting FICO

Sales and maintenance

USA, CANADA AND ALL AMERICAS
Email: XpressSalesUS@fico.com
WORLDWIDE

Email: XpressSalesUK@fico.com

Tel: +44 207 940 8718
Fax: +44 870 420 3601

Xpress Optimization, FICO
FICO House

International Square
Starley Way

Birmingham B37 7GN

UK

Related services

Strategy Consulting: Included in your contract with FICO may be a specified amount of
consulting time to assist you in using FICO Optimization Modeler to meet your business needs.
Additional consulting time can be arranged by contract.

Conferences and Seminars: FICO offers conferences and seminars on our products and services.
For announcements concerning these events, go to www.fico.com or contact your FICO account
representative.

About FICO

FICO (NYSE:FICO) delivers superior predictive analytics solutions that drive smarter decisions. The
company’s groundbreaking use of mathematics to predict consumer behavior has transformed
entire industries and revolutionized the way risk is managed and products are marketed. FICO's
innovative solutions include the FICO® Score—the standard measure of consumer credit risk in
the United States—along with industry-leading solutions for managing credit accounts,
identifying and minimizing the impact of fraud, and customizing consumer offers with pinpoint
accuracy. Most of the world’s top banks, as well as leading insurers, retailers, pharmaceutical
companies, and government agencies, rely on FICO solutions to accelerate growth, control risk,
boost profits, and meet regulatory and competitive demands. FICO also helps millions of
individuals manage their personal credit health through www.myfico.com. Learn more at
www.fico.com. FICO: Make every decision count™.

Fair Isaac Corporation Confidential and Proprietary Information 141

Index

A

activity
get, 87

annotations
get, 28, 120

array, 2, 35
check indices, 72
dynamic, 62
dynamic bounded, 62
general, 62
get dimensions, 63
get entry, 74
get first entry, 67
get first true entry, 70
get indices, 66
get last entry, 68
get next entry, 69
get next true entry, 71
get size, 65
get type, 64
indexing set, 55
logical entry, 62
storage class, 62
true entry, 62
types, 62

B
bim, 19, 138
binary

model file, 138
binary model file, 19, 136
Boolean, 2, 35
breakpoint, 101

clearing, 111

setting, 110
C
check

array indices, 72

running model, 24
column

get number, 88
comment

user, 137
compare

indices, 73
compile

model, 137, 139
constant, 35

next, 123
constraint

get activity, 87

get dual, 85

get number, 89

get slack, 86

linear, 2, 35
control parameter, 121

next, 126

D
date
convert to JDN, 93, 94
current, 95
debugging, 137
decision variable, see variable
dependency
next, 30, 124
dimension
get, 63
DSO, see dynamic shared object, 113
dual
get, 85
dynamic array, 62
dynamic bounded array, 62
dynamic library, see dynamic shared object
dynamic shared object, 2, 113
descriptor, 118
get next, 122
get property, 128
load, 130
next constant, 123
next control parameter, 126
next subroutine, 127
next type, 125
parameter, 121

unload, 119
E
element
get value, 58
entry
get first, 67
get first true, 70
get last, 68
get next, 69
get next true, 71
logical, 62
true, 62
execute
model, 23, 103
export
problem, 80
F
file

Fair Isaac Corporation Confidential and Proprietary Information

142

Index

find

output, 80

identifier, 35
model, 32
type, 38

finish, 6
function, 35

get

information, 47
next, 127
next overloading, 44

activity, 87

array dimensions, 63
array entry, 74

array indices, 66

array size, 65

array type, 64

column number, 88
dual, 85

dynamic shared object, 118
dynamic shared object property, 128
element value, 58

first array entry, 67

first index, 60

first true array entry, 70
index, 59

last array entry, 68

last index, 61

list size, 51

list type, 52

model, 32

model property, 29
next array entry, 69
next constant, 123

next control parameter, 126
next dynamic shared object, 122
next identifier, 41

next model, 31

next overloading, 44
next parameter, 42
next subroutine, 127
next true array entry, 71
next type, 125
objective, 81

parameter, 121
problem status, 79
reduced cost, 84

row number, 89

set size, 56

set type, 57

signature, 47

slack, 86

solution value, 82, 83
version, 17, 18

1/0 driver, 131

bin:, 135

cb:, 131

mem:, 133

raw:, 134

sysfd:, 131
identifier

find, 35

next, 41
index

get, 59

get first, 60

get last, 61
index set, 55
indices

check, 72

compare, 73
infeasible problem, 79
initialization, 3, 4
integer, 2, 35
interrupt

model, 25

J
JDN, 93

L
library
Model Compiler, 1, 136
native, 113
Run Time, 1, 2
line index, 101, 106
get number of, 107
get source location, 108
of a procedure/function, 109
linear constraint, 2, 35
list, 2, 35, 50
get elements, 53, 54
get size, 51
get type, 52
storage class, 52
load
dynamic shared object, 130
model, 20
logical entry, 62
LP format, 80

M
main problem, 78
maximization, 80
memory block, 35
minimization, 80
model, 2
check running, 24
compile, 137, 139
debug, 103
find, 32
get next, 31
get problem status, 79
get property, 29
load, 20
reset, 22

Fair Isaac Corporation Confidential and Proprietary Information

143

Index

run, 23, 103

stop, 25

unload, 27
Model Compiler Library, 1, 136
model file, 136

binary, 19, 138
model property

get, 29
module, see dynamic shared object, 113
Mosel

finish, 6

initialization, 4

initialize, 5

version, 17
MPS format, 80

N
names
scramble, 80
native library, 113
next
identifier, 41
local identifier, 105
overloading, 44
parameter, 42

(0]
objective
get value, 81
optimal solution, 79
optimization
failed, 79
unfinished, 79
output, 80
output format, 80
overloading, 44, 127

P
parameter, 121
next, 42
post processing interface, 33
problem
active, 78
export, 80
get status, 79
infeasible, 79
select, 90
unbounded, 79
problem component
next, 43
procedure, 35
information, 47
next, 127
next overloading, 44

R
range, 55
range set, 55, 60, 61
real, 2, 35
record, 75
get field value, 77

get fields, 76
reduced cost

get, 84
reference, 35
requirement

next, 45
resetting model, 22
row

get number, 89
run

model, 23, 103
Run Time Library, 1, 2

S
scrambled names, 80
set, 2, 35, 55
get element value, 58
get first index, 60
get index, 59
get last index, 61
get size, 56
get type, 57
storage class, 57
signature, 47
size
get, 51, 56, 65
slack
get, 86
solution
get, 82, 83
get value, 81
optimal, 79
status, 79
source file, 137, 139
source model file, 136
stack frame, 101
changing, 112
stop
model, 25
storage class
array, 62
list, 52
set, 57
string, 2, 35
strip symbols, 137
structure, 35
subroutine
next, 127
symbol
strip, 137

T
table, see array
terminate, 6
termination, 3, 6
tracing, 137
true entry, 62
type, 35

array, 62

basic, 2

Fair Isaac Corporation Confidential and Proprietary Information

144

Index

find, 38
get, 52, 57, 64
get property, 48

next, 125
types
all, 35
U
unbounded problem, 79
unfinished
optimization, 79
unload
dynamic shared object, 119
model, 27

user comment, 137
user type, 35

V

variable, 2, 35
get number, 88
get reduced cost, 84
get solution, 82, 83

X

XPRM_DBG_CONT, 104
XPRM_DBG_NEXT, 104
XPRM_DBG_STEP, 104
XPRM_DBG_STOP, 104
xprm_mg, 136
XPRM_MTP_APPND, 48
XPRM_MTP_COPY, 48
XPRM_MTP_CREAT, 48
XPRM_MTP_DELET, 48
XPRM_MTP_FRSTR, 48
XPRM_MTP_ORSET, 48
XPRM_MTP_PROB, 48
XPRM_MTP_PRTBL, 48
XPRM_MTP_RFCNT, 48
XPRM_MTP_TOSTR, 48
XPRM_PBCHG, 79
XPRM_PBINF, 79
XPRM_PBOPT, 79
XPRM_PBOTH, 79
XPRM_PBSOL, 79
XPRM_PBUNB, 79
XPRM_PBUNF, 79
xprm_rt, 2
XPRM_RT_BREAK, 23, 104
XPRM_RT_ENDING, 104
XPRM_RT_ERROR, 23, 103
XPRM_RT_EXIT, 104
XPRM_RT_IOERR, 23, 103
XPRM_RT_MATHERR, 23, 103
XPRM_RT_NIFCT, 104
XPRM_RT_OK, 23, 103
XPRM_RT_STOP, 23, 103
XPRM_STR_ARR, 35
XPRM_STR_CONST, 35
XPRM_STR_LIST, 35
XPRM_STR_MEM, 35

XPRM_STR_PROB, 48
XPRM_STR_PROC, 35
XPRM_STR_REC, 48
XPRM_STR_REF, 35
XPRM_STR_SET, 35
XPRM_STR_UTYP, 35
XPRM_TYP_BOOL, 35
XPRM_TYP_INT, 35
XPRM_TYP_LINCTR, 35
XPRM_TYP_MPVAR, 35
XPRM_TYP_NOT, 35
XPRM_TYP_REAL, 35
XPRM_TYP_STRING, 35
XPRMalltypes, 35
XPRMarray, 2
XPRM_ARR_DENSE, 64
XPRMattrdesc, 2
XPRMautounloaddso, 117
XPRMboolean, 2
XPRMcb_sendctrl, 100
XPRMcb_sendint, 97
XPRMcb_sendreal, 98
XPRMcb_sendstring, 99
XPRMchkarrind, 72
XPRMcmpindices, 73
XPRMcompmod, 137
XPRMcompmodsec, 137
XPRMdate2jdn, 93
XPRMdbg_clearbrkp, 111
XPRMdbg_findproclndx, 109
XPRMdbg_getlndx, 106
XPRMdbg_getlocation, 108
XPRMdbg_getnblndx, 107
XPRMdbg_getnextlocal, 105
XPRMdbg_runmod, 103
XPRMdbg_setbrkp, 110
XPRMdbg_setstacklev, 112
XPRMdsolib, 2
XPRMdsotyptostr, 34
XPRMexecmod, 139
XPRMexportprob, 78, 80
XPRMfindattrdesc, 37
XPRMfinddso, 118
XPRMfindident, 35
XPRMfindmod, 32
XPRMfindtypecode, 38
XPRMfinish, 3, 6
XPRMflushdso, 119
XPRMfree, 6
XPRMfreelibpath, 9
XPRMfreememblk, 92
XPRMgetact, 87
XPRMgetannotations, 28
XPRMgetarrdim, 63
XPRMgetarrsets, 66
XPRMgetarrsize, 65
XPRMgetarrtype, 64
XPRMgetarrval, 74
XPRMgetattr, 39
XPRMgetcsol, 83

Fair Isaac Corporation Confidential and Proprietary Information

145

Index

XPRMgetctrnum, 89
XPRMgetdefworkdir, 7
XPRMgetdsoannotations, 120
XPRMgetdsoparam, 121
XPRMgetdsopath, 115
XPRMgetdsoprop, 128
XPRMgetdual, 85
XPRMgetelsetndx, 59
XPRMgetelsetval, 58
XPRMgetfieldval, 77
XPRMgetfirstarrentry, 67
XPRMgetfirstarrtruentry, 70
XPRMgetfirstsetndx, 60
XPRMgetlastarrentry, 68
XPRMgetlastsetndx, 61
XPRMgetlibpath, 8
XPRMgetlicerrmsg, 5
XPRMgetlistsize, 51
XPRMgetlisttype, 52
XPRMgetlocaledir, 15
XPRMgetmodprop, 29
XPRMgetnextanident, 40
XPRMgetnextarrentry, 69
XPRMgetnextarrtruentry, 71
XPRMgetnextattrdesc, 46
XPRMgetnextdep, 30
XPRMgetnextdso, 122
XPRMgetnextdsoconst, 123
XPRMgetnextdsodep, 124
XPRMgetnextdsoparam, 126
XPRMgetnextdsoproc, 127
XPRMgetnextdsotype, 125
XPRMgetnextfield, 76
XPRMgetnextident, 41
XPRMgetnextiodrv, 129
XPRMgetnextlistelt, 53
XPRMgetnextmod, 31
XPRMgetnextparam, 42
XPRMgetnextpbcomp, 43
XPRMgetnextproc, 44
XPRMgetnextreq, 45
XPRMgetobjval, 81
XPRMgetprevlistelt, 54
XPRMgetprobstat, 79
XPRMgetprocinfo, 47
XPRMgetrcost, 84
XPRMgetsdmax, 16
XPRMgetsetsize, 56
XPRMgetsettype, 57
XPRMgetslack, 86
XPRMgettypeprop, 48
XPRMgetvarnum, 88
XPRMgetversion, 17
XPRMgetversions, 18
XPRMgetvsol, 82
XPRM_GRP, 52, 57, 64
XPRM_GRP_DYN, 62
XPRM_GRP_DYN, 52, 57
XPRM_GRP_GEN, 62
XPRM_GRP_GEN, 57

XPRMinit, 3, 4
XPRMinteger, 2
XPRMisrunmod, 24
XPRMjdn2date, 94
XPRMlinctr, 2
XPRMlist, 2
XPRMloadmod, 19, 20
XPRMloadmodsec, 20
XPRMmodel, 2, 19
XPRMmpvar, 2
XPRMpathcheck, 96
XPRM_PBRES, 79
XPRMpreloaddso, 130
XPRMproc, 2
XPRMreal, 2
XPRMregstatdso, 116
XPRMremovetmpdir, 14
XPRMresetmod, 22
XPRMrunmod, 23
XPRMselectprob, 90
XPRMset, 2
XPRMsetdefstream, 21
XPRMsetdefworkdir, 10
XPRMsetdsopath, 114
XPRMsetlocaledir, 11
XPRMsetrestrictions, 12
XPRMsetsdmax, 13
XPRMstoprunmod, 25
XPRM_STR, 35
XPRMstring, 2
XPRMtermrunmod, 26
XPRMtime, 95
XPRM_TYP, 35, 52, 57, 64
XPRMunloadmod, 27

Fair Isaac Corporation Confidential and Proprietary Information

146

	Introduction
	Mosel Run Time Library
	General
	Initialization and termination
	XPRMinit
	XPRMgetlicerrmsg
	XPRMfinish, XPRMfree
	XPRMgetdefworkdir
	XPRMgetlibpath
	XPRMfreelibpath
	XPRMsetdefworkdir
	XPRMsetlocaledir
	XPRMsetrestrictions
	XPRMsetsdmax
	XPRMremovetmpdir
	XPRMgetlocaledir
	XPRMgetsdmax
	XPRMgetversion
	XPRMgetversions

	Model management
	XPRMloadmod, XPRMloadmodsec
	XPRMsetdefstream
	XPRMresetmod
	XPRMrunmod
	XPRMisrunmod
	XPRMstoprunmod
	XPRMtermrunmod
	XPRMunloadmod
	XPRMgetannotations
	XPRMgetmodprop
	XPRMgetnextdep
	XPRMgetnextmod
	XPRMfindmod

	Post processing interface
	XPRMdsotyptostr
	XPRMfindident
	XPRMfindattrdesc
	XPRMfindtypecode
	XPRMgetattr
	XPRMgetnextanident
	XPRMgetnextident
	XPRMgetnextparam
	XPRMgetnextpbcomp
	XPRMgetnextproc
	XPRMgetnextreq
	XPRMgetnextattrdesc
	XPRMgetprocinfo
	XPRMgettypeprop
	Lists
	XPRMgetlistsize
	XPRMgetlisttype
	XPRMgetnextlistelt
	XPRMgetprevlistelt

	Sets
	XPRMgetsetsize
	XPRMgetsettype
	XPRMgetelsetval
	XPRMgetelsetndx
	XPRMgetfirstsetndx
	XPRMgetlastsetndx

	Arrays
	XPRMgetarrdim
	XPRMgetarrtype
	XPRMgetarrsize
	XPRMgetarrsets
	XPRMgetfirstarrentry
	XPRMgetlastarrentry
	XPRMgetnextarrentry
	XPRMgetfirstarrtruentry
	XPRMgetnextarrtruentry
	XPRMchkarrind
	XPRMcmpindices
	XPRMgetarrval

	Records
	XPRMgetnextfield
	XPRMgetfieldval

	Problems
	XPRMgetprobstat
	XPRMexportprob
	XPRMgetobjval
	XPRMgetvsol
	XPRMgetcsol
	XPRMgetrcost
	XPRMgetdual
	XPRMgetslack
	XPRMgetact
	XPRMgetvarnum
	XPRMgetctrnum
	XPRMselectprob

	Miscellaneous
	XPRMfreememblk
	XPRMdate2jdn
	XPRMjdn2date
	XPRMtime
	XPRMpathcheck
	XPRMcb_sendint
	XPRMcb_sendreal
	XPRMcb_sendstring
	XPRMcb_sendctrl

	Debugger interface
	XPRMdbg_runmod
	XPRMdbg_getnextlocal
	XPRMdbg_getlndx
	XPRMdbg_getnblndx
	XPRMdbg_getlocation
	XPRMdbg_findproclndx
	XPRMdbg_setbrkp
	XPRMdbg_clearbrkp
	XPRMdbg_setstacklev

	Handling of modules
	XPRMsetdsopath
	XPRMgetdsopath
	XPRMregstatdso
	XPRMautounloaddso
	XPRMfinddso
	XPRMflushdso
	XPRMgetdsoannotations
	XPRMgetdsoparam
	XPRMgetnextdso
	XPRMgetnextdsoconst
	XPRMgetnextdsodep
	XPRMgetnextdsotype
	XPRMgetnextdsoparam
	XPRMgetnextdsoproc
	XPRMgetdsoprop
	XPRMgetnextiodrv
	XPRMpreloaddso

	Using IO drivers for data exchange
	sysfd driver
	cb driver
	Handling of general streams
	Handling of initializations blocks

	mem driver
	raw driver
	bin driver

	Mosel Model Compiler Library
	Compilation
	XPRMcompmod, XPRMcompmodsec
	XPRMexecmod

	Appendix
	Contacting FICO
	Product support
	Product education
	Product documentation
	Sales and maintenance
	Related services
	About FICO

	Index

