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Abstract

This paper describes several examples of combining Mathematical Programming (LP and MIP) solution tech-
niques with Constraint Programming.

For the implementation we use Xpress Optimizer and Artelys-Kalis from the Mosel language (Mosel modules
mmxprs and kalis)

In the first example CP propagation is used as preprocessor for LP solving; in the second example CP solving is

employed

as a cut generation heuristic for a MIP branch-and-cut algorithm.
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1 Introduction

The representation of real-world conditions with more and more detail sometimes render
optimization applications difficult to represent and solve with a given solution technique. In such
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a case it may become necessary to develop some type of a decomposition approach, possibly
treating parts of a problem with different solution methods and tools for modeling and solving
them.

In the modeling and solving environment Xpress Mosel several (solver) modules may be used
jointly to implement and solve such difficult problems. In particular, it is possible to implement
solution algorithms combining Constraint Programming (CP) with Linear or Mixed Integer
Programming by using Xpress Kalis with the mmxprs module that provides access to Xpress
Optimizer.

This paper discusses two schemes of combining CP with LP/MIP for problem solving:

m CP and MIP solving may be used sequentially, for instance, employing CP constraint
propagation as a preprocessing routine for LP/MIP problems, as shown in the project
planning example in Section 2.

m An example of parallel MIP-CP problem solving is given in Section 3 where CP solving is used
as cut generation routine during the MIP branch-and-bound search in a scheduling with
machine assignment problem.

The examples described in this paper require Xpress Kalis to be installed and licensed in addition
to a standard installation of FICO Xpress Optimization (Optimizer and Mosel).

Combining different solution methods for solving problems requires some knowledge of all
involved solvers and techniques. This paper assumes that the reader is familiar with both,
Mathematical Programming and Constraint Programming, and also has a certain experience with
using the involved solvers from the Mosel language.

For examples of problem solving with Xpress Optimizer the reader is referred to the ‘Mosel User
Guide’, in particular Chapter ‘More about Integer Programming’. All functionality of the Mosel
modules mmxprs and mmjobs is documented in the ‘Mosel Language Reference Manual’. The
"Xpress Optimizer Reference Manual’ is the complete reference for the solver. The Xpress
Whitepaper ‘Mosel: multiple models and parallel solving’ discusses examples of using the module
mmjobs. The documentation of Xpress Kalis is available in the ‘Xpress Kalis Reference Manual’. A
detailed introduction to working with this software is given in the ‘Xpress Kalis User Guide'.

2 Using CP propagation as preprocessor

When the constraints in a CP model are posted to the solver, they often immediately trigger some
reductions to the domains of the involved variables. In certain (easy) cases, it may even happen
that the constraint propagation is sufficient to obtain a solution without having to start an
enumeration.

The domain reductions obtained through the constraint propagation can be passed on to an LP
or MIP model, thus replacing, or re-inforcing the preprocessing algorithms that are used by LP
and MIP solvers.

The example description in the following sections is taken from Section 7.1 of the book
‘Applications of optimization with Xpress-MP’.

2.1 Project scheduling example

A town council wishes to construct a small stadium in order to improve the services provided to
the people living in the district. After the invitation to tender, a local construction company is
awarded the contract and wishes to complete the task within the shortest possible time. All the
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major tasks are listed in the following table. The durations are expressed in weeks. Some tasks
can only start after the completion of certain other tasks. The last two columns of the table refer
to question 2 which we shall see later.

Table 1: Data for stadium construction

Max. Add. cost per

Task Description Duration Predecessors reduct. week (in 1000 )
1 Installing the construction site 2 none 0 -
2 Terracing 16 1 3 30
3 Constructing the foundations 9 2 1 26
4 Access roads and other networks 8 2 2 12
5 Erecting the basement 10 3 2 17
6 Main floor 6 4,5 1 15
7 Dividing up the changing rooms 2 4 1 8
8 Electrifying the terraces 2 6 0 -
9 Constructing the roof 9 4,6 2 42
10 Lighting of the stadium 5 4 1 21
" Installing the terraces 3 6 1 18
12 Sealing the roof 2 9 0 -
13 Finishing the changing rooms 1 7 0 -
14 Constructing the ticket office 7 2 2 22
15 Secondary access roads 4 4,14 2 12
16 Means of signaling 3 8,11,14 1 6
17 Lawn and sport accessories 9 12 3 16
18 Handing over the building 1 17 0 -

Question 1: Which is the earliest possible date of completing the construction?

Question 2: The town council would like the project to terminate earlier than the time
announced by the builder (answer to question 1). To obtain this, the council is prepared to pay a
bonus of €30K for every week the work finishes early. The builder needs to employ additional
workers and rent more equipment to cut down on the total time. In the preceding table he has
summarized the maximum number of weeks he can save per task (column ‘Max. reduct.’) and the
associated additional cost per week. When will the project be completed if the builder wishes to
maximize his profit?

2.2 Model formulation for question 1

The representation of this classical project scheduling problem as a CP model is quite
straightforward. We add a fictitious task with duration zero that corresponds to the end of the
project. We thus consider the set of tasks TASKS = {1, ..., N} where N is the fictitious end task. Let
DUR; be the duration of task i. The precedences between tasks are represented by a set of arcs,
ARCS (an arc (i, ) € ARCS symbolizes that task / precedes task j). The fictitious task follows all
tasks that have no successor.

We define decision variables start; for the start time of every task i. These variables take values
within the interval {0, ..., HORIZON} where HORIZON is the upper bound on the total duration
given by the sum of all task durations.

We obtain the following simple CP model:

Vi € TASKS : start; € {0, ..., HORIZON}
(i, j) € ARCS : start; + DUR; < start;
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2.3 Implementation of question 1

Since there are no side constraints, the earliest possible completion time is the earliest start of the
fictitious task N. We can obtain this value without enumeration thanks to the propagation of
constraints. After posting the precedence constraints we retrieve the earliest completion time
bestend and set this value as the upper bound on the last task. This fixes the start and completion
times for the tasks on the critical path; for all other tasks the start and completion times are
reduced to the feasible intervals:

model "B-1 Stadium construction (CP)"
uses "kalis"

declarations
N = 19 ! Number of tasks in the project
! (last = fictitious end task)
TASKS = 1..N
ARC: dynamic array(range,range) of integer ! Matrix of the adjacency graph
DUR: array(TASKS) of integer ! Duration of tasks
HORIZON : integer ! Time horizon
start: array(TASKS) of cpvar ! Start dates of tasks

bestend: integer
end-declarations

initializations from ’Data/blstadium.dat’
DUR ARC
end-initializations

HORIZON:= sum(j in TASKS) DUR(j)

forall(j in TASKS) do
0 <= start(j); start(j) <= HORIZON
end-do

! Task i precedes task j
forall(i, j in TASKS | exists(ARC(i, j))) do
Prec(i,j):= start(i) + DUR(i) <= start(j)
if not cp_post(Prec(i,j)) then
writeln("Posting precedence ", i, "-", j, " failed")
exit (1)
end-if
end-do

! Since there are no side-constraints, the earliest possible completion
! time is the earliest start of the fictitiuous task N

bestend:= getlb(start(N))

start(N) <= bestend

writeln("Earliest possible completion time: ", bestend)

! For tasks on the critical path the start/completion times have been fixed
! by setting the bound on the last task. For all other tasks the range of

! possible start/completion times gets displayed.

forall(j in TASKS) writeln(j, ": ", start(j))

end-model

2.4 Results for question 1

The model in the previous section prints the following output. The earliest completion time is 64
weeks. For every operation (task), its start time or interval of possible start times is indicated.

Earliest possible completion time: 64
1: 0
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2: 2

3: 18

4: [18..29]
5: 27

6: 37

7: [26..61]
8: [43..59]
9: 43

10: [26..59]
11: [43..58]
12: 52

13: [28..63]
14: [18..53]
15: [26..60]
16: [46..61]
17: 54

18: 63

19: 64

2.5 Model formulation for question 2

This second problem is called scheduling with project crashing. To reduce the total duration of
the project, we need to take into account the result of the preceding optimization run, bestend.
This value is now the upper bound on all start and completion time intervals.

Furthermore, for every task i let MAXW,; denote the maximum number of weeks by which the
task may be shortened.

2.5.1 CP model

The durations of tasks are not fixed any more and are therefore now represented by decision
variables duration; that take values in the range {DUR; — MAXW,, ..., DUR;}.

With these additional variables the CP model now looks as follows:

Vi € TASKS : start; € {0, ..., bestend}
Vi € TASKS : duration; € {DUR; — MAXW,, ..., DUR;}
V(i, j) € ARCS : start; + duration; < start;

This model does not include the objective function (i.e., maximization of the total gain from
finishing the project early). This objective is dealt with by the LP model (see the following
sections). As a result of the constraint propagation in the CP model, we merely obtain reduced
start time intervals for the operations; the durations need to be determined either by
enumeration or as shown below, by the LP solution algorithm.

2.5.2 LP model

We introduce variables start; to represent the earliest start time of tasks i and variables save; that
correspond to the number of weeks that we wish to save for every task i. The only constraints
that are given are the precedences. A task j may only start if all its predecessors have finished,
which translates into the following constraints: if there is an arc between i and j, then the
completion time of i (calculated as start; + DUR; — save;) must not be larger than the start time of j.

V(i, j) € ARCS : start; + DUR; — save; < start;

The variables save; are bounded by the maximum reduction in weeks, MAXW;. These constraints
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must be satisfied for all tasks i except the last, fictitious task N.

Vi € TASKS\{N} : save; < MAXW;

For the last task, the variable savey represents the number of weeks the project finishes earlier
than the solution bestend calculated in answer to question 1. The new completion time of the
project starty must be equal to the previous completion time minus the advance savey, which
leads to the following constraint:

starty = bestend — savey

The objective defined by the second question is to maximize the builder’s profit. For every week
finished early, he receives a bonus of BONUS k. In exchange, the savings in time for a task j costs
COST; k (column ‘Add. cost per week’ of Table 1). We thus obtain the following objective
function.
maximize BONUS - savey — Z COST; - save;
iETASKS\{N}

The complete mathematical model consists of the constraints and the objective function
explained above, and the non-negativity conditions for variables start; and save;:

maximize BONUS - savey — Z COST,; - save;
i€ TASKS\{N}

V(i, j) € ARCS : start; + DUR; — save; < start;

starty = bestend — savey

Vi € TASKS\{N} : save; < MAXW,;

Vi € TASKS : start; > 0, save; > 0

2.6 Implementation of question 2

The second problem can be solved with the following algorithm:

m Solve the CP problem for question 1 and retrieve the solution, in particular the earliest
completion time bestend.

m Solve the CP problem for question 2 with the time horizon bestend and retrieve the start
time intervals.

m Define and solve the LP model for the second problem, using the bounds on the start times
from CP as bounds on the LP variables start;.

For the implementation, we would like to build on the CP model that we have shown above in
the solution to question 1. However, since there is no means of modifying constraints that have
been posted to the Kalis solver, we cannot simply work with a single file. Instead, we are going to
split the implementation into two model files, one with the definition of the algorithms and the
LP problem, and a second, the submodel, with the definition and solving of the CP problems.
Depending on the model parameter MODE, the CP model either defines the model for question 1
or question 2. Instead of printing out an error message if an infeasibility is detected while posting
the constraints, the CP model now sends a failure message to the master problem.

model "B-1 Stadium construction (CP submodel)"
uses "kalis", "mmjobs"
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parameters

MODE = 1 ! Model version: 1 - fixed duratiomns
! 2 - variable dur.

HORIZON = 100 ! Time horizon

end-parameters

declarations
N =19 ! Number of tasks in the project
! (last = fictitious end task)
TASKS = 1..N
ARC: dynamic array(range,range) of integer ! Matrix of the adjacency graph
DUR: array(TASKS) of integer ! Duration of tasks
MAXW: array(TASKS) of integer ! Max. reduction of tasks (in weeks)
start: array(TASKS) of cpvar ! Start dates of tasks
duration: array(TASKS) of cpvar ! Durations of tasks

lbstart,ubstart: array(TASKS) of integer ! Bounds on start dates of tasks
EVENT_FAILED=2 ! Event code sent by submodel
end-declarations

initializations from ’Data/blstadium.dat’
DUR ARC
end-initializations

forall(j in TASKS) setdomain(start(j), O, HORIZON)

if MODE = 1 then ! xxx% Fixed durations
! Precedence relations between tasks
forall(i, j in TASKS | exists(ARC(i, j))) do
Prec(i,j):= start(i) + DUR(i) <= start(j)
if not cp_post(Prec(i,j)) then
send (EVENT_FAILED,O0)
end-if
end-do

! Earliest poss. completion time = earliest start of the fictitiuous task N
start(N) <= getlb(start(N))

else ! xxx* Durations are variables
initializations from ’Data/blstadium.dat’
MAXW

end-initializations
forall(j in TASKS) setdomain(duration(j), DUR(j)-MAXW(j), DUR(j))

! Precedence relations between tasks
forall(i, j in TASKS | exists(ARC(i, j))) do
Prec(i,j):= start(i) + duration(i) <= start(j)
if not cp_post(Prec(i,j)) then
send (EVENT_FAILED,0)
end-if
end-do
end-if

! Pass solution data to the master model

forall(i in TASKS) do

lbstart(i):= getlb(start(i)); ubstart(i):= getub(start(i))
end-do

initializations to "raw:"

lbstart as "shmem:lbstart" ubstart as "shmem:ubstart"
end-initializations
end-model

After compiling the CP submodel, the master model first runs the version for question 1, and
retrieves the start time intervals. It then executes the CP submodel again, but now in the form for
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guestion 2 and with the time horizon bestend. The start time intervals from the solution of the
second CP run are used in the subsequent definition of the LP problem.

model "B-1 Stadium construction (CP + LP) master model"
uses "mmxprs", "mmjobs"

forward procedure print_CP_solution(num: integer)

declarations

N =19 ! Number of tasks in the project
! (last = fictitious end task)

TASKS = 1..N

ARC: dynamic array(range,range) of integer ! Matrix of the adjacency graph
DUR: array(TASKS) of integer ! Duration of tasks

BONUS: integer ! Bonus per week finished earlier

MAXW: array(TASKS) of integer ! Max. reduction of tasks (in weeks)
COST: array(TASKS) of real ! Cost of reducing tasks by a week
lbstart,ubstart: array(TASKS) of integer ! Bounds on start dates of tasks
HORIZON: integer ! Time horizon

bestend: integer ! CP solution value

CPmodel: Model ! Reference to the CP model

msg: Event ! Termination message sent by submodel

end-declarations

initializations from ’Data/blstadium.dat’
DUR ARC MAXW BONUS COST
end-initializations

HORIZON:= sum(o in TASKS) DUR(o)

! xxxx First CP model x**x*x

res:= compile("blstadium_sub.mos") ! Compile the CP model
load(CPmodel, "blstadium_sub.bim") ! Load the CP model
setworkdir (CPmodel, ".")
run(CPmodel, "MODE=1,HORIZON=" + HORIZON) ! Solve first version of CP model
wait ! Wait until subproblem finishes
msg:= getnextevent ! Get the termination event message
if getclass(msg)<>EVENT_END then ! Check message type
writeln("Submodel 1 is infeasible")
exit(1)
end-if

initializations from "raw:"
lbstart as "shmem:lbstart" ubstart as "shmem:ubstart"
end-initializations

bestend:= lbstart(N)
print_CP_solution(1)

! ***x Second CP model *x*x*x*

run(CPmodel, "MODE=2,HORIZON=" + bestend) ! Solve second version of CP model

wait ! Wait until subproblem finishes
msg:= getnextevent ! Get the termination event message
if getclass(msg)<>EVENT_END then ! Check message type
writeln("Submodel 2 is infeasible")
exit(2)
end-if

! Retrieve solution from memory

initializations from "raw:"

lbstart as "shmem:lbstart" ubstart as "shmem:ubstart"
end-initializations
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print_CP_solution(2)

! s***x LP model for second problem x*k*x

declarations
start: array(TASKS) of mpvar ! Start times of tasks
save: array(TASKS) of mpvar ! Number of weeks finished early

end-declarations

! Objective function: total profit
Profit:= BONUS*save(N) - sum(i in 1..N-1) COST(i)*save(i)

! Precedence relations between tasks
forall(i,j in TASKS | exists(ARC(i,j)))
Precm(i,j):= start(i) + DUR(i) - save(i) <= start(j)

! Total duration
start(N) + save(N) = bestend

! Limit on number of weeks that may be saved
forall(i in 1..N-1) save(i) <= MAXW(i)

! Bounds on start times deduced by constraint propagation
forall(i in 1..N-1) do

lbstart(i) <= start(i); start(i) <= ubstart(i)

end-do

! Solve the second problem: maximize the total profit

setparam("XPRS_VERBOSE", true)

setparam("XPRS_PRESOLVE", 0) ! We use constraint propagation as preprocessor
maximize (Profit)

! Solution printing

writeln("Total profit: ", getsol(Profit))
writeln("Total duration: ", getsol(start(N)), " weeks")
forall(i in 1..N-1)

write(strfmt(i,2), ": ", strfmt(getsol(start(i)),-3),
if(i mod 6 = 0,"\11",""))
writeln

1 skeskok ok ok ok sk ko ook ook stk ok sk ko ok sk ok kol ok sk ok sk ok ok ok ko ok sk ok sk ok ok ok sk ok ok ok ok ok
procedure print_CP_solution(num: integer)
writeln("CP solution (version ", num, "):")

writeln("Earliest possible completion time: ", lbstart(N), " weeks")
forall(i in 1..N-1)
write(i, ": ", lbstart(i), if(lbstart(i)<ubstart(i), "-"+ubstart(i), ""),

if(i mod 6 = 0, "\n", ", "))
end-procedure

end-model

2.7 Results for question 2

The model above produces the following output. Setting XPRS_VERBOSE to true makes the
software display the log of the LP solver: some information about the problem size (numbers of

constraints, variables, non-zero coefficients, and MIP entities) and a log of the simplex algorithm.

If you re-run the model without the bound updates from CP to LP you may observe a slightly
larger number of Simplex iterations.

CP solution (version 1):

Earliest possible completion time: 64 weeks

1: 0, 2: 2, 3: 18, 4: 18-29, 5: 27, 6: 37

7: 26-61, 8: 43-59, 9: 43, 10: 26-59, 11: 43-58, 12: 52
13: 28-63, 14: 18-53, 15: 26-60, 16: 46-61, 17: 54, 18: 63
CP solution (version 2):

Earliest possible completion time: 52 weeks

Using CP propagation as preprocessor Fair Isaac Corporation Confidential and Proprietary Information
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1: 0-12, 2: 2-14, 3: 15-27, 4: 15-37, 5: 23-35, 6: 31-43
7: 21-62, 8: 36-60, 9: 36-48, 10: 21-60, 11: 36-60, 12: 43-55
13: 22-63, 14: 15-57, 15: 21-62, 16: 38-62, 17: 45-57, 18: 51-63

Reading Problem /xprs_6cf5_404d0008
Problem Statistics

28 ( 0 spare) rows
38 ( 0 spare) structural columns
83 ( 0 spare) non-zero elements
Global Statistics
0 entities 0 sets 0 set members
Its Obj Value S Ninf Nneg Sum Inf Time
0 360.000300 D 17 0 29.000010 0
17 87.000000 D 0 0 .000000 0

Optimal solution found
Total profit: 87
Total duration: 54 weeks

1: 0 2: 2 3: 16 4: 15 5: 23 6: 31
7: 23 8: 36 9: 36 10: 23 11: 36 12: 45
13: 25 14: 15 15: 23 16: 39 17: 47 18: 53

3 Combining CP and MIP

Application problems often combine different subproblems that are solved better with one or
another solver, making the complete problem difficult or unmanageable for a single solver. A
typical example is production planning and scheduling applications. The long-term (planning)
aspects are usually more easily handled by LP solvers whereas the short-term (scheduling)
subproblems are better suited for CP solvers. Solving these two parts completely independent of
each other may lead to infeasible scheduling subproblems or plans that do not correspond to the
reality of production. A possible solution to this dilemma is to iteratively solve LP planning
problems and CP scheduling problems, until a feasible schedule for the planned quantities is
obtained.

Another method of combined MIP-CP problem solving that provides a tighter integration of the
two techniques consists of solving CP subproblems for generating cuts at the nodes of a MIP
Branch-and-Bound search. This technique has already been applied successfully to several
large-scale planning and scheduling applications by PSA and BASF (see for instance the
description of hybrid MIP-CP algorithms implemented with Mosel in [BP03] and [Sad04]). This
type of combination is more technical than sequential CP and LP/MIP solving since it requires the
developer of the algorithm to interact with the MIP search at every node.

Cut generation algorithms can be implemented with the help of the Xpress Optimizer callbacks
(see the '‘Mosel Language Reference Manual’ for the definition of callbacks with Mosel and the
"Xpress Optimizer Reference Manual’ for an explanation of the Optimizer callback functions).

The original description of the example in this section was published in [JGO1]. A prototype
implementation was developed by N. Pisaruk in the context of the EU-project LISCOS.

3.1 Example: Machine assignment and sequencing

We need to produce 12 products on a set of three machines. Each machine may produce all of the
products but processing times and costs vary (Table 2). Furthermore, for every product we are
given its release and due dates (Table 3). We wish to determine a production plan for all products
that minimizes the total production cost.

Combining CP and MIP Fair Isaac Corporation Confidential and Proprietary Information 10
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Table 2: Machine-dependent production costs and durations

Production costs Durations
Prod. \ Mach. 1 2 3 1 2 3
1 12 6 7 10 14 13
2 13 6 10 7 9 8
3 10 4 6 11 17 15
4 8 4 5 6 9 12
5 12 6 7 6 10
6 10 5 6 2 3 4
7 7 4 5 10 15 16
8 9 5 5 8 11 12
9 10 5 7 10 14 13
10 8 4 5 8 11 14
1 15 8 9 9 12 16
12 13 7 7 3 5 6

Table 3: Release dates and due dates of products
Product 1 2 3 4 5 6 7 8 9 10 11 12

Release 2 4 5 7 9 0 3 6 1 2 3 4
Duedate 32 33 36 37 39 34 30 26 36 38 31 22

3.2 Model formulation

We are going to represent this problem by two subproblems: the machine assignment problem
and the sequencing of operations on machines. The former is implemented by a MIP model; the
latter is formulated as a CP (single machine) problem.

3.2.1 MIP model

Let COSTpm denote the production cost and DURp, the processing time of product p (p € PRODS,
the set of products) on machine m (m € MACH, the set of machines).

To formulate the machine assignment problem we introduce binary variables use,n, that take the
value 1 if product p is produced on machine m and zero otherwise. The objective function is then
given as
minimize Z Z COSTpm - Usepm
PEPRODS meMACH

The assignment constraints expressing that each order needs exactly one machine for processing
it are defined as follows:
Vp € PRODS: » usepn =1
meMACH

In addition to these constraints that already fully state the problem we may define some
additional constraints to strengthen the LP relaxation. All production takes place between the
earliest release date and the latest due date. If we denote the length of this interval by
MAX_LOAD, we may formulate the following valid inequalities expressing that the total
processing time of products assigned to a machine cannot exceed MAX_LOAD:

Vm e MACH: > DURpy - usepm < MAX_LOAD
pPEPRODS
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3.2.2 CP model

Once the set of operations assigned to machine m, ProdMach,, (ProdMach,, C PRODS), is known,
we obtain the following sequencing problem for this machine:

Vp € ProdMachy, : start, € {RELy, ..., DUE, — DURyn }
Vp, g € ProdMach, p < q : start, + DUR, < starty V starty + DURgm < starty
3.3 Implementation

We are using the following algorithm for modeling and solving this problem:

Define the MIP machine assignment problem.
Define the operations of the CP model.
Start the MIP Branch-and-Bound search.
At every node of the MIP search:
while function generate_cuts returns true
re-solve the LP-relaxation

Function generate_cuts
for all machines m call generate_cut_machine (m)
if at least one cut has been generated
Return true
otherwise
Return false

Function generate_cut_machine (m)
Collect all operations assigned to machine m
if more than one operation assigned to m
Solve the CP sequencing problem for m
if sequencing succeeds
Save the solution
otherwise
Add an infeasibility cut for machine m to the MIP

The implementation of this model is split into two Mosel models: the first, sched_main.mos,
contains the MIP master problem and the definition of the cut generation algorithm. The second
model, sched_sub.mos, implements the CP single machine sequencing model.

The first part of the master model sets up the data arrays, compiles and loads the CP submodel,
calls subroutines for the model definition and problem solving, and finally produces some
summary result output. We have defined the filename of the data file as a parameter to be able
to change the name of the data file at the execution of the model without having to change the
model source. Correspondingly, all data, including the sizes of index sets, are read in from file. At
first, we read in only the values of NP and NM. Subsequently, when declaring the sets and arrays
that make use of these values, NP and NM are known and the arrays are created as fixed arrays.
Otherwise, if their indexing sets are not known, these arrays would automatically be declared as
dynamic arrays and for all but arrays of basic types (real, integer, etc.) we have to create their
entries explicitly.

model "Schedule (MIP + CP) master problem"
uses "mmsystem", "mmxprs", "mmjobs"

parameters
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DATAFILE = "Data/sched_3_12.dat"
VERBOSE = 1
end-parameters

forward procedure define_MIP_model
forward procedure setup_cutmanager

forward public function generate_cuts: boolean

forward public procedure print_solution

declarations
NP: integer
NM: integer
end-declarations

initializations from DATAFILE
NP NM
end-initializations

Number of operations (products)
Number of machines

declarations
PRODS = 1..NP ! Set of products
MACH = 1..NM ! Set of machines

REL: array(PRODS) of integer

DUE: array(PRODS) of integer
MAX_LOAD: integer

COST: array(PRODS,MACH) of integer
DUR: array(PRODS,MACH) of integer
starttime: real

ctcut: integer

solstart: array(PRODS) of integer

use: array(PRODS,MACH) of mpvar
Cost: linctr

totsolve,totCP: real
ctrun: integer
CPmodel: Model

ev: Event
EVENT_SOLVED=2
EVENT_FAILED=3
end-declarations

! Read data from file
initializations from DATAFILE
REL DUE COST DUR
end-initializations

! sxxx Problem definition s***x
define_MIP_model

res:=compile("sched_sub.mos")
load (CPmodel, "sched_sub.bim")

! skk*x Solution algorithm sk
starttime:= gettime

setup_cutmanager

totsolve:= 0.0

Release dates of orders

Due dates of orders

max_p DUE(p) - min_p REL(p)
Processing cost of products
Processing times of products
Measure program execution time
Counter for cuts

*x%% MIP model:
1 if p uses machine m, otherwise 0
Objective function

Time measurement

Counter of CP runs

Reference to the CP sequencing model
Event

Event codes sent by submodels

Definition of the MIP model
Compile the CP model
Load the CP model

Settings for the MIP search

initializations to "raw:"
totsolve as "shmem:solvetime"
REL as "shmem:REL" DUE as "shmem:DUE"
end-initializations
minimize(Cost) ! Solve the problem
writeln("Number of cuts generated: ", ctcut)

writeln("(", gettime-starttime, "sec) Best solution value: "

initializations from "raw:"

, getobjval)
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totsolve as "shmem:solvetime"
end-initializations

writeln("Total CP solve time: ", totsolve)
writeln("Total CP time: ", totCP)
writeln("CP runs: ", ctrun)

The MIP model corresponds closely to the mathematical model that we have seen in the previous
section.

procedure define_MIP_model

! Objective: total processing cost
Cost:= sum(p in PRODS, m in MACH) COST(p,m) * use(p,m)

! Each order needs exactly one machine for processing
forall(p in PRODS) sum(m in MACH) use(p,m) = 1

! Valid inequalities for strengthening the LP relaxation
MAX_LOAD:= max(p in PRODS) DUE(p) - min(p in PRODS) REL(p)
forall(m in MACH) sum(p in PRODS) DUR(p,m) * use(p,m) <= MAX_LOAD

forall(p in PRODS, m in MACH) use(p,m) is_binary

end-procedure

The cut generation callback function generate_cuts is called at least once per MIP node. For
every machine, it checks whether the assigned operations can be scheduled or whether an
infeasibility cut needs to be added. If any cuts have been added, the LP relaxation needs to be
re-solved and the cut generation function will be called again, until no more cuts are added. It is
important to set and re-set the values of XPRS_solutionfile as shown in our example at the
beginning and end of this function if it accesses Xpress Optimizer solution values.

The function generate_cut_machine first collects all tasks that have been assigned to the given
machine m into the set ProdMach by calling the procedure products_on_machine. If there are still
unassigned tasks the returned set is empty, otherwise, if the set has more than one element it
tries to solve the sequencing subproblem (function solve_CP_problem). If this problem cannot be
solved, then the function adds a cut to the MIP problem that makes the current assignment of
operations to this machine infeasible.

procedure products_on_machine(m: integer, ProdMach: set of integer)

forall(p in PRODS) do
val:=getsol(use(p,m))
if (val > 0 and val < 1) then
ProdMach:={}
break
elif val>0.5 then
ProdMach+={p}
end-if
end-do

end-procedure

1
! Generate a cut for machine m if the sequencing subproblem is infeasible
function generate_cut_machine(m: integer): boolean

declarations

ProdMach: set of integer

end-declarations

! Collect the operations assigned to machine m
products_on_machine(m, ProdMach)
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! Solve the sequencing problem (CP model): if solved, save the solution,
! otherwise add an infeasibility cut to the MIP problem
size:= getsize(ProdMach)
returned:= false
if (size>1) then
if not solve_CP_problem(m, ProdMach, 1) then
Cut:= sum(p in ProdMach) use(p,m) - (size-1)
if VERBOSE > 2 then
writeln(m,": ", ProdMach, " <= ", size-1)
end-if
addcut (1, CT_LEQ, Cut)
returned:= true
end-if
end-if

end-function

! Cut generation callback function
public function generate_cuts: boolean
returned:=false; ctcutold:=ctcut

setparam("XPRS_solutionfile", 0)

forall(m in MACH) do

if generate_cut_machine(m) then
returned:=true ! Call function again for this node
ctcut+=1

end-if

end-do

setparam("XPRS_solutionfile", 1)

if returned and VERBOSE>1 then

writeln("Node ", getparam("XPRS_NODES"), ": ", ctcut-ctcutold,

" cut(s) added")
end-if

end-function

The solving of the CP model is started from the function solve_CP_problem that writes out the
necessary data to shared memory and starts the execution of the submodel contained in the file
sched_sub.mos.

function solve_CP_problem(m: integer, ProdMach: set of integer,
mode: integer): boolean
declarations
DURm: dynamic array(range) of integer
sol: dynamic array(range) of integer
solvetime: real
end-declarations

! Data for CP model

forall(p in ProdMach) DURm(p):= DUR(p,m)
initializations to "raw:"

ProdMach as "shmem:ProdMach"

DURm as "shmem:DURm"
end-initializations

! Solve the problem and retrieve the solution if it is feasible
startsolve:= gettime
returned:= false
if (getstatus (CPmodel)=RT_RUNNING) then
fflush
writeln("CPmodel is running")
fflush
exit (1)
end-if
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ctrun+=1

run (CPmodel,

wait

ev:= getnextevent

if getclass(ev)=EVENT_SOLVED then
returned:= true

if mode = 2 then
initializations from

sol as "shmem:solstart"

end-initializations

" "

raw:

"NP=" + NP + ",VERBOSE=" + VERBOSE + ",MODE=" + mode)
! Wait for a message from the submodel
! Retrieve the event

forall(p in ProdMach) solstart(p):=sol(p)

end-if

elif getclass(ev)<>EVENT_FAILED then
writeln("Problem with Kalis")
exit(2)

end-if

wait

dropnextevent

totCP+= (gettime-startsolve)

end-function

! Ignore "submodel finished" event

We complete the MIP model with settings for the cut manager and the definition of the integer
solution callback. The Mosel comparison tolerance is set to a slightly larger value than the
tolerance applied by Xpress Optimizer. It is important to switch the LP presolve off since we

interfere with the matrix during the execution of the algorithm (alternatively, it is possible to
fine-tune presolve to use only non-destructive algorithms). Sufficiently large space for cuts and

cut coefficients should be reserved in the matrix. We also enable output printing by the Optimizer
and choose among different MIP log frequencies (depending on model parameter VERBOSE.

procedure setup_cutmanager
setparam("XPRS_CUTSTRATEGY", 0)
feastol:= getparam("XPRS_FEASTOL")
setparam("zerotol", feastol * 10)
setparam("XPRS_PRESOLVE", 0)
setparam("XPRS_MIPPRESOLVE", 0)
command ("KEEPARTIFICIALS=0")
setparam("XPRS_SBBEST", 0)
setparam("XPRS_HEURSTRATEGY", 0)
setparam("XPRS_EXTRAROWS", 10000)
setparam("XPRS_EXTRAELEMS", NP*30000)
setcallback (XPRS_CB_CM, "generate_cuts")
setcallback (XPRS_CB_UIS, "print_solution")
setparam("XPRS_COLORDER", 2)
case VERBOSE of
1: do
setparam("XPRS_VERBOSE", true)
setparam("XPRS_MIPLOG", -200)
end-do
2: do
setparam("XPRS_VERBOSE", true)
setparam("XPRS_MIPLOG", -100)
end-do
3: do
setparam("XPRS_VERBOSE", true)
setparam("XPRS_MIPLOG", 3)
end-do
end-case

end-procedure

The definition of the integer solution callback

! Disable automatic cuts

! Get Optimizer zero tolerance
! Set comparison tolerance of Mosel
! Disable presolve

! Disable MIP presolve

! No global red. cost fixing
! Turn strong branching off
! Disable MIP heuristics

! Reserve space for cuts

! . and cut coefficients

! Define the cut manager callback
! Define the integer solution cb.

! Detailed MIP output

is, in parts, similar to the function

generate_cut_machine. To obtain a detailed solution output we need to re-solve all CP
subproblemes, this time with run MODE two, meaning that the CP model writes its solution

Combining CP and MIP
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information to shared memory.

public procedure print_solution
declarations
ProdMach: set of integer
end-declarations

writeln("(",gettime-starttime, "sec) Solution ",
getparam("XPRS_MIPSOLS"), ": Cost: ", getsol(Cost))

if VERBOSE > 1 then

forall(p in PRODS) do
forall(m in MACH) write(getsol(use(p,m))," ")
writeln

end-do

end-if

if VERBOSE > O then
forall(m in MACH) do
ProdMach:= {}

! Collect the operations assigned to machine m
products_on_machine(m, ProdMach)

Size:= getsize(ProdMach)

if Size > 1 then

! (Re)solve the CP sequencing problem
if not solve_CP_problem(m, ProdMach, 2) then
writeln("Something wrong here: ", m, ProdMach)
end-if

elif Size=1 then
elem:=min(p in ProdMach) p
solstart(elem) :=REL(elem)

end-if

end-do

! Print out the result
forall(p in PRODS) do
msol:=sum(m in MACH) m*getsol(use(p,m))

writeln(p, " -> ", msol,": ", strfmt(solstart(p),2), " - ",

strfmt (DUR(p,round(msol))+solstart(p),2), " [",
REL(p), ", ", DUE(p), "1")

end-do

writeln("Time: ", gettime - starttime, "sec")

writeln

fflush

end-if

end-procedure

The following code listing shows the complete CP submodel. At every execution, the set of tasks
assigned to one machine and the corresponding durations are read from shared memory. The
disjunctions between pairs of tasks are posted explicitly to be able to stop the addition of
constraints if an infeasibility is detected during the definition of the problem. The search stops at
the first feasible solution. If a solution was found, it is passed back to the master model if the
model parameter MODE has the value two. In every case, after termination of the CP search the
submodel sends a solution status event back to the master model.

model "Schedule (MIP + CP) CP subproblem"

uses "kalis", "mmjobs" , "mmsystem"

parameters

VERBOSE = 1

NP = 12 ! Number of products
MODE = 1 ! 1 - decide feasibility
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end-parameters
startsolve:= gettime

declarations

PRODS = 1..NP

ProdMach: set of integer
end-declarations

initializations from "raw:"
ProdMach as "shmem:ProdMach"
end-initializations

finalize (ProdMach)

declarations

REL: array(PRODS) of integer

DUE: array(PRODS) of integer

DURm: array(ProdMach) of integer
solstart: array(ProdMach) of integer

! 2 - return complete solution

! Set of products

Release dates of orders

Due dates of orders

Processing times on machine m
Solution values for start times

Start times of tasks
Disjunctive constraints
Enumeration strategy

Event codes sent by submodels

start: array(ProdMach) of cpvar

Disj: array(range) of cpctr

Strategy: array(range) of cpbranching
EVENT_SOLVED=2

EVENT_FAILED=3

solvetime: real
end-declarations

initializations from "raw:"

DURm as "shmem:DURm" REL as "shmem:REL" DUE as "shmem:DUE"
end-initializations

! Bounds on start times
forall(p in ProdMach) setdomain(start(p), REL(p), DUE(p)-DURm(p))

! Disjunctive constraint

ct:=1

forall(p,q in ProdMach| p<q) do
Disj(ct):= start(p) + DURm(p) <= start(q) or start(q) + DURm(q) <= start(p)
ct+= 1

end-do

! Post disjunctions to the solver
nDisj:= ct; j:=1; res:= true
while (res and j<nDisj) do

res:= cp_post(Disj(j))

=t

end-do

! Solve the problem
if res then
Strategy(1) := settle_disjunction(Disj)
Strategy(2) := assign_and_forbid(KALIS_SMALLEST_DOMAIN, KALIS_MIN_TO_MAX,
start)

cp_set_branching(Strategy)
res:= cp_find_next_sol
end-if

! Pass solution to master problem
if res then
forall(p in ProdMach) solstart(p):= getsol(start(p))
if MODE=2 then
initializations to "raw:"
solstart as "shmem:solstart"
end-initializations

Combining CP and MIP Fair Isaac Corporation Confidential and Proprietary Information

18



Hybrid MIP/CP solving I ICQ

end-if

send (EVENT_SOLVED, 0)
else

send (EVENT_FAILED,0)
end-if

! Update total running time measurement
initializations from "raw:"

solvetime as "shmem:solvetime"
end-initializations

solvetime+= gettime-startsolve
initializations to "raw:"

solvetime as "shmem:solvetime"
end-initializations

end-model

3.4 Results

The best solution produced for the data set sched_3_12 is the following :

Cost: 92

1 ->3: 2-15 [2, 32]
2 -> 3: 15 - 23 [4, 33]
3 ->2: 15 - 32 [5, 36]
4 ->1: 24 - 30 [7, 37]
5 ->2: 32 - 38 [9, 39]
6 ->2: 0- 3 [0, 34]
7 ->1: 3 - 13 [3, 30]
8 -> 1: 16 - 24 [6, 26]
9 -> 3: 23 - 36 [11, 36]

10 -> 1: 30 - 38 [2, 38]
11 ->2: 3 - 15 [3, 31]
12 -> 1: 13 - 16 [4, 22]

A total of 1604 cuts are added to the MIP problem by 2691 CP model runs and the
Branch-and-Bound search explores 12295 nodes. Optimality is proven within a few seconds on a
Pentium IV PC.

It is possible to implement this problem entirely either with Xpress Optimizer or with Xpress Kalis.
However, already for this three machines — 12 jobs instance the problem is extremely hard for
either technique on its own. With CP it is difficult to prove optimality and with MIP the
formulation of the disjunctions makes the definition of a large number of binary variables
necessary (roughly in the order of number_of_machines - number_of_products®) which makes the
problem impracticable to deal with.

3.5 Parallel solving of CP subproblems

Instead of solving the CP single-machine subproblems at every MIP node sequentially, we can
modify our Mosel models to solve the subproblems in parallel—especially when working on a
multiprocessor machine this may speed up the cut generation process and hence shorten the total
run time. We modify the algorithm of Section 3.3 as follows:
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Define the MIP machine assignment problem.
Define the operations of the CP model.
Start the MIP Branch-and-Bound search.
At every node of the MIP search:
while function generate_cuts returns true
re-solve the LP-relaxation

Function generate_cuts

Collect all machines that are fully assigned into set ToSolve
for all machines m € ToSolve call start_CP_model (m)
Wait for the solution status messages from all submodels

if submodel m is infeasible

Add an infeasibility cut for machine m to the MIP

if at least one cut has been generated

Return true
otherwise

Return false

Procedure start_CP_model (m)
Collect all operations assigned to machine m
Write data for this machine to memory
Start the submodel execution

The modified version of the function generate_cuts looks as follows. For the full example code
the reader is referred to the set of User Guide examples provided with the Xpress Kalis
distribution (files sched_mainp.mos and sched_subp.mos).

! Collect the operations assigned to machine m
procedure products_on_machine(m: integer)

NumOp (m) : =0
forall(p in PRODS) do

val:=getsol(use(p,m))

if (! not isintegral(use(p,m)) !) (val > 0 and val < 1) then

NumOp (m) : =0
break
elif val>0.5 then
NumOp (m) +=1
OpMach (m,NumOp(m)) := p
end-if
end-do

end-procedure

!
! Add an infeasibility cut for machine m to the MIP problem
procedure add_cut_machine(m: integer)

Cut:= sum(p in 1..NumOp(m)) use(OpMach(m,p),m) - (NumOp(m)-1)
if VERBOSE > 1 then

write(m,": ")

forall(p in 1..NumOp(m)) write(OpMach(m,p), " ")
writeln(" <= ", NumOp(m)-1)

end-if

addcut (1, CT_LEQ, Cut)

end-procedure

The implementation of the CP submodels remains largely unchanged, with the exception of the
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labels employed for passing data via shared memory: we append the machine index to every data
item to be able to distinguish between the data used by the different subproblems running in
parallel.

For the data set sched_3_12.dat we have observed only a few percent decrease of the total
running time on a dual processor machine using the parallel implementation: in many nodes only
a single CP subproblem is solved and if there are several subproblems to be solved their execution
may be of quite different length. For instances with a larger number of machines the
parallelization is likely to show more effect.

4 Summary

The examples in this whitepaper show two schemes of combining CP and LP/MIP modeling and
problem solving. Whilst the first is a loosly coupled combined algorithm (execution of a CP and
an LP problem in sequence) the second is an example of a fairly tight integration, using CP as cut
generation algorithm for a MIP branch-and-cut search. Many other schemes are possible (for
instance, iterative solving of a series of MIP and CP subproblems as in [Tim02])—an hybridization
scheme must always be chosen depending on the particular structure of an application problem
and its typical data instances.

Although the combination of different solving techniques has proven successful in a number of
applications, the author would like to issue a warning to the interested reader that it is seldom
worthwhile spending time on a problem that can be tackled by one of the techniques separately.
Hybrid solution algorithms need to be developed, implemented, and tested on a case-by-case
basis, meaning a considerable investment in terms of development effort and requiring a good
understanding of the solution methods and solvers involved.
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