
Design choices for optimization applications

Susanne Heipcke

Xpress Team, FICO
http://www.fico.com/xpress

Contents

1 Modeling platforms . 1
2 Application design . 3
3 Xpress-Mosel . 5
4 Mosel: Selected new features . 10

4.1 Distributed model execution . 11
4.2 IO callbacks . 14
4.3 XML interface . 15

5 Application examples . 17
5.1 Alternative interfaces: Portfolio rebalancing 17
5.2 Distributed Mosel: Client-server . 21
5.3 Visualization: Aircraft routing . 21

Summary . 24

1 Modeling platforms

Notes

Model development cycle

& analysis
Interpretation

conception
Problem

Model

Computational

Computational
solution instance

Model solution

problem instance

Human Computer

Why use modeling software?

• Developing a working model is the difficult bit
• Important to have software that helps

– speed to market
– verify correctness
– maintenance & modification
– algorithmic considerations
– execution speed

Modeling platforms c©2010 Fair Isaac Corporation. All rights reserved. page 1

Modeling platforms

Matrix generators

70s 80s 90s 2000s

G
A

M
S

A
M

P
L

A
IM

M
S

Modeling languages

GUI

Model building libraries

B
C

L
M

os
el

m
p−

m
od

el

Modeling + Programming

C
on

ce
rt

O
P

L
Modeling language Modeling library Matrix based

easy

quite easy very hard

native/some intrinsic native language

easyVerify correctness

Data handling

Maintenance easy harder difficult

Speed to market

Model execution speed possibly slower

Building algorithms

slow

faster

slowest

fastest

quite easylanguage dependent

high level

fast

Xpress modeling interfaces

• Mosel

– formulate model and develop optimiza-
tion methods using Mosel language / en-
vironment

• BCL

– build up model in your application code
using object-oriented model builder li-
brary

• Optimizer

– read in matrix files
– input entire matrix from program arrays

Mosel

• A modeling and solving environment

– integration of modeling and solving
– programming facilities
– open, modular architecture

• Interfaces to external data sources (e.g. ODBC,
host application) provided

• Language is concise, user friendly, high level
• Best choice for rapid development and deploy-

ment

Modeling platforms c©2010 Fair Isaac Corporation. All rights reserved. page 2

Xpress-BCL

• Model consists of BCL functions within appli-
cation source code (C, C++, Java, C# or VB)

• Develop with standard C/C++/Java/C#/VB tools
• Provide your own data interfacing
• Lower level, object oriented approach
• Enjoy benefits of structured modeling within

your application source code

Xpress-Optimizer

• Model is set of arrays within application source
code (C, Java, C#, or VB)

• May also input problems from a matrix file
• Develop with standard C/C#/Java/VB tools
• Provide your own data interfacing
• Very low level, no problem structure
• Most efficient but lose easy model develop-

ment and maintenance

2 Application design

Notes

Project

design

Algorithms?

Application

Target
audience? design?

audience?
Target

’Lightweight’
GUIPreference? architecture?

Application

End users
Research Business experts

OR specialists/ Analysts/

componentStandalone
Integrated

Model + GUI

Application
architecture?

interaction?
User Data I/O,

interfaces?

Application design c©2010 Fair Isaac Corporation. All rights reserved. page 3

interaction?
User

Restarts (change data)

Tuning (solver parameters,
stopping criteria)

Configuration
(select constraints)

static dynamic

Influence solution algorithms

Logging/progress display

bounds, reject solutions)
(user−defined cuts or heuristics,

File formats, database
connectivity

Embedding functionality

Data I/O,
interfaces?

Development environment

(access to and
interaction with model)

Model interfaces Application interface

GUI Host languages

Project
design?

maintenance?
Development/

several
platforms

Possibly

platform
flexible
Single Single

platform

Overlapping phasesIndependent phases All−in−one (single phase)

maintenance?
Development/

Persons / teams involved

Inhouse vs. external

Continuity

Solver choice Solver
interaction

Decomposition/
Parallelism

Paradigm switch

User extensions

Standard formats

Related problem types

Callbacks Programming facilities

Communication and
coordination mechanisms

Algorithms?

Distributed computing

Application design c©2010 Fair Isaac Corporation. All rights reserved. page 4

3 Xpress-Mosel

Notes

• A high-level modeling language combined
with standard functionality of programming
languages

– implementation of models and solution
algorithms in a single environment

• Open, modular architecture

– extensions to the language without any
need for modifications to the core system

• Compiled language

– platform-independent compiled models
for distribution to protect intellectual
property

...and also

• Mosel modules

– solvers: mmxprs, mmquad, mmxslp,
mmnl, kalis

– data handling: mmetc, mmodbc, mmoci
– model handling, utilities: mmjobs, mm-

system
– graphics: mmive, mmxad

• IVE: visual development environment (Win-
dows)

• Library interfaces for embedding models into
applications (C, Java, C#, VB)

• Tools: debugger, profiler, model conversion,
preprocessor

Example: Portfolio optimization Problem descrip-
tion

• An investor wishes to invest a certain amount
of money into a selection of shares.

• Constraints:

1. Invest at most 30% of the capital into any
share.

2. Invest at least half of the capital in North-
American shares.

3. Invest at most a third in high-risk shares.

• Objective: obtain the highest expected return
on investment

Xpress-Mosel c©2010 Fair Isaac Corporation. All rights reserved. page 5

Example: Portfolio optimization Mathematical
model

maximize
∑

s∈SHARES

RETs · fracs∑
s∈RISK

fracs ≤ 1 / 3

∑
s∈NA

fracs ≥ 0. 5∑
s∈SHARES

fracs = 1

∀s ∈ SHARES : 0 ≤ fracs ≤ 0. 3

Example: Portfolio optimization Mosel model

Example: Portfolio optimization Logical Conditions

1. Binary variables

2. Semi-continuous variables

Xpress-Mosel c©2010 Fair Isaac Corporation. All rights reserved. page 6

Example: Portfolio optimization Extended problem

• We wish to

– run the model with different limits on the
portion of high-risk shares,

– represent the results as a graph, plotting
the resulting total return against the de-
viation as a measure of risk.

• Algorithm: for every parameter value

– re-define the constraint limiting the per-
centage of high-risk values,

– solve the resulting problem,
– if the problem is feasible: store the solu-

tion values.

Xpress-Mosel c©2010 Fair Isaac Corporation. All rights reserved. page 7

Data handling

• Physical files:

– text files (Mosel format, new: binary for-
mat, diskdata; free format, new: XML,

– spreadsheets, databases (ODBC or specific
drivers)

• In memory:

– memory block/address
– streams; pipes; callbacks (new: IO call-

back)

XAD application

Xpress-Mosel c©2010 Fair Isaac Corporation. All rights reserved. page 8

Advanced solving tasks

• Infeasibility handling

– definition of slack variables
– IIS (irreducible infeasible sets)
– infeasibility repair meachanism

• Solution enumeration

– obtain the N best solutions

Solution enumeration

Standard MIP search: Solution enumerator:

Schemes of decomposition and concurrent solving

The "multis":

– multi-solver

Mosel instance

Mosel model

uses ’mmxslp’
uses ’mmxprs’

The "multis":

– multi-solver
– multi-problem

Mosel instance

Mosel model

shared

data
ProblemProblem

Xpress-Mosel c©2010 Fair Isaac Corporation. All rights reserved. page 9

The "multis":

– multi-solver
– multi-problem
– multi-model

Submodel

Mosel instance

Master model

events

start

ProblemProblem

The "multis":

– multi-solver
– multi-problem
– multi-model
– multi-node

Remote instance

Submodel

Local instance

Master model

events

start

ProblemProblem

• Simple parallel runs

– different data instances
– different algorithm configurations

• Decomposition

– Benders
– Dantzig-Wolffe

• Column generation

– loop over top node
– branch-and-price

• Cut generation

– (cut-and-branch, branch-and-cut)
– adding constraints

4 Mosel: Selected new features

Notes

Mosel: Selected new features c©2010 Fair Isaac Corporation. All rights reserved. page 10

4.1 Distributed model execution

• mmjobs: facilities for model management,
synchronization of concurrent models based
on event queues, shared memory IO driver.

• New: extending capacities for handling multi-
ple models to distributed computing using sev-
eral Mosel instances (running locally or on re-
mote nodes connected through a network)

• Mosel instance management: connecting and
disconnecting Mosel instances, access to re-
mote files, handling of host aliases (new type:
Mosel)

• Remote connection IO drivers: two drivers
(xsrv and rcmd) for creating remote Mosel in-
stances.

• Remote file acces IO drivers: access to phys-
ical files or streams on remote Mosel in-
stances (rmt), usable wherever Mosel ex-
pects a (generalized) filename, in particular in
initializations blocks.

• Remote machine must run a server

– Default (as specified by value of control
conntmpl): Mosel server xprmsrv (started
as separate program, available for all
platforms supported by Xpress), connect
with driver xsrv

connect(mosInst, "ABCD123")
! Same as: connect(mosInst, "xsrv:ABCD123")

– Alternative: other servers, connect with
driver rcmd, e.g. with rhs, (NB: Mosel
command line option -r is required for
remote runs):

connect(mosInst, "rcmd:rsh ABCD123 mosel -r")

• The Mosel server can be configured.

– Use this command to display the available
options:

xprmsrv -h

Configuration options include verbosity
settings, choice of the TCP port, and the
definition of a log file.

– Alternatively, use a configuration file for
more flexible configuration and to define
multiple environments

xprmsrv myconfig.conf

Mosel: Selected new features c©2010 Fair Isaac Corporation. All rights reserved. page 11

Configuration file

• Contents of myconfig.conf:

Global setting of a log file
LOGFILE=/tmp/logfile.txt

Add a password to the default environment ’xpress’
[xpress]
PASS=hardone

Define new environment using a different Xpress version
[xptest]
XPRESSDIR=/opt/xpressmp/testing
XPRESS=/opt/xpressmp/lic
MOSEL_CWD=$XPRESSDIR/workdir

• Usage:

r1:= connect(inst1, "xsrv:localhost/xpress/hardone")
r2:= connect(inst2, "xrsv:mypcname/xptest")

Local instances

• Remote machine may be identical with the cur-
rent node (new instance started on the same
machine in a separate process)

connect(mosInst, "")
! Same as: connect(mosInst, "rcmd:mosel -r")

connect(mosInst, "localhost")
! Same as: connect(mosInst, "xsrv:localhost")

Executing a submodel

model "Run model rtparams"
uses "mmjobs"

declarations
modPar: Model

end-declarations
! Compile the model file

if compile("rtparams.mos")<>0 then exit(1); end-if
! Load the bim file

load(modPar, "rtparams.bim")
! Start model execution + parameter settings

run(modPar, "PARAM1=" + 3.4 + ",PARAM3=’a string’" + ",PARAM4=" + true)
wait ! Wait for model termination
dropnextevent ! Ignore termination event message

end-model

Executing a submodel remotely

model "Run model rtparams remotely"
uses "mmjobs"

declarations
modPar: Model
mosInst: Mosel

end-declarations
! Compile the model file

if compile("rtparams.mos")<>0 then exit(1); end-if

NODENAME:= "" ! "" for current node, or name, or IP address
! Open connection to a remote node

if connect(mosInst, NODENAME)<>0 then exit(2); end-if
! Load the bim file

load(mosInst, modPar, "rmt:rtparams.bim")
! Start model execution + parameter settings

run(modPar, "PARAM1=" + 3.4 + ",PARAM3=’a string’" + ",PARAM4=" + true)
wait ! Wait for model termination
dropnextevent ! Ignore termination event message

end-model

Mosel: Selected new features c©2010 Fair Isaac Corporation. All rights reserved. page 12

model "Compile and run model rtparams remotely"
uses "mmjobs"

declarations
modPar: Model
mosInst: Mosel

end-declarations

NODENAME:= "" ! "" for current node, or name, or IP address
! Open connection to a remote node

if connect(mosInst, NODENAME)<>0 then exit(2); end-if
! Compile the model file remotely

if compile(mosInst, "", "rmt:rtparams.mos", "rtparams.bim")<>0 then
exit(1); end-if ! Load the bim file

load(mosInst, modPar, "rtparams.bim")
! Start model execution + parameter settings

run(modPar, "PARAM1=" + 3.4 + ",PARAM3=’a string’" + ",PARAM4=" + true)
wait ! Wait for model termination
dropnextevent ! Ignore termination event message

end-model

New and overloaded subroutines

• Instance connection/disconnection

r:= connect(myInst, "")
disconnect(myInst)

• Remote compilation & loading

r:= compile(myInst, "", "filename.mos", "filename.bim")
load(myInst, myModel, "filename.bim")

• Redirecting Mosel streams

setdefstream(myInst, F_OUTPUT, "rmt:instoutput.txt")

Some utilities

• System information

compName:= getsysinfo(SYS_NODE); allinfo:=getsysinfo(myInst)
currNode:= getparam("NODENUMBER"); parent:= getparam("PARENTNUMBER")
modelID:= getparam("JOBID"); instID:= getid(myInst)

• Instance status information

if getstatus(myInst)<>0 then
writeln("Instance is not connected")

end-if

• Aliases

sethostalias("localhost2","localhost")
r:= connect(myInst, "localhost2")
sysName:= gethostalias("localhost2"); getaliases(allAliases)
clearaliases

Distributed model execution

• Documentation: ’Mosel Language Reference
manual’, Chapter 7 mmjobs

• Examples: see newest version of the whitepa-
per ’Multiple models and parallel solving with
Mosel’, Section 2.8 Working with remote Mo-
sel instances

• Another introductory example in ’Guide for
evaluators 2’, Section 6 Working in a dis-
tributed architecture

Mosel: Selected new features c©2010 Fair Isaac Corporation. All rights reserved. page 13

4.2 IO callbacks

• In-memory communication so far: fixed data
structure sizes

• New: alternative communication mechanism
working with flows enables dynamic sizing of
data structures on the application level

– particularly useful for solution output
where effective data sizes are not known
a priori

– available in C, Java, .NET

• Pass the address of the function (C) or class
(Java) implementing the callback to Mosel via
model parameters

• initializations to: use the Mosel post-
processing library functions to retrieve data
from Mosel into the application

• initializations from: new set of func-
tions to send data to Mosel, using the same
format as the default text file format

IO callbacks (C)

mydata: [("ind1" 3) [5 1.2] ("ind2" 7) [4 6.5]]

XPRMcb_sendctrl(cb, XPRM_CBC_OPENLST, 0); ! [
XPRMcb_sendctrl(cb, XPRM_CBC_OPENNDX, 0); ! (
XPRMcb_sendstring(cb, "ind1", 0); ! "ind1"
XPRMcb_sendint(cb, 3, 0); ! 3
XPRMcb_sendctrl(cb, XPRM_CBC_CLOSENDX, 0); !)
XPRMcb_sendctrl(cb, XPRM_CBC_OPENLST, 0); ! [
XPRMcb_sendint(cb, 5, 0); ! 5
XPRMcb_sendreal(cb, 1.2, 0); ! 1.2
XPRMcb_sendctrl(cb, XPRM_CBC_CLOSELST, 0); !]
XPRMcb_sendctrl(cb, XPRM_CBC_OPENNDX, 0); ! (
XPRMcb_sendstring(cb, "ind2", 0); ! "ind2"
XPRMcb_sendint(cb, 7, 0); ! 7
XPRMcb_sendctrl(cb, XPRM_CBC_CLOSENDX, 0); !)
XPRMcb_sendctrl(cb, XPRM_CBC_OPENLST, 0); ! [
XPRMcb_sendint(cb, 4, 0); ! 4
XPRMcb_sendreal(cb, 6.5, 0); ! 6.5
XPRMcb_sendctrl(cb, XPRM_CBC_CLOSELST, 0); !]
XPRMcb_sendctrl(cb, XPRM_CBC_CLOSELST, 0); !]

IO callbacks (Java)

mydata: [("ind1" 3) [5 1.2] ("ind2" 7) [4 6.5]]

ictx.sendControl(ictx.CONTROL_OPENLST); ! [
ictx.sendControl(ictx.CONTROL_OPENNDX); ! (
ictx.send("ind1"); ! "ind1"
ictx.send(3); ! 3
ictx.sendControl(ictx.CONTROL_CLOSENDX); !)
ictx.sendControl(ictx.CONTROL_OPENLST); ! [
ictx.send(5); ! 5
ictx.send(1.2); ! 1.2
ictx.sendControl(ictx.CONTROL_CLOSELST); !]
ictx.sendControl(ictx.CONTROL_OPENNDX); ! (
ictx.send("ind2"); ! "ind2"
ictx.send(7); ! 7
ictx.sendControl(ictx.CONTROL_CLOSENDX); !)
ictx.sendControl(ictx.CONTROL_OPENLST); ! [
ictx.send(4); ! 4
ictx.send(6.5); ! 6.5
ictx.sendControl(ictx.CONTROL_CLOSELST); !]
ictx.sendControl(ictx.CONTROL_CLOSELST); !]

Mosel: Selected new features c©2010 Fair Isaac Corporation. All rights reserved. page 14

IO callbacks

• Documentation: ’Mosel Library Reference
manual’, Section 1.5.2.2 cb driver – Handling
of initializations blocks

• Examples: see newest version of the ’Mosel
User Guide’, Sections 13.4.3 Dynamic data (C),
14.1.6.3 Dynamic data (Java)

4.3 XML interface

• The module smew provides an XML interface
for the Mosel language.

• smew relies on two external libraries without
which the module will not work:

– scew (’simple C expat wrapper’) — han-
dling of the XML tree

– expat — the parser

Structure of an XML document

<?xml ... ?> Preamble

<root>
<parent>
<element attrname="attrvalue">

contents
<child>
<leaf>leafcontents</leaf>

</child>
<child>2nd child contents</child>

</element>
<emptyelement attrname="attrvalue" />

</parent>
</root>

smew functionality

• New types:

– xmldoc represents an XML document
– xmleltref is a reference to a

node/element in the document.
Several xmleltref may reference the
same element and the module does
not check consistency: if an element is
removed, it is up to the user to make
sure none of its references will be used
afterwards

Mosel: Selected new features c©2010 Fair Isaac Corporation. All rights reserved. page 15

• Subroutines:

– File access: load, save
– Document structure: getroot,
setroot, isvalid, getpreamble,
setpreamble, getchildren,
getparent, add, remove

– Handling elements: getname,
setname, getcontent,
get[int|real|bool|str]content,
setcontent, getattr,
get[int|real|bool|str]attr,
setattr, delattr, getallattr

Example: Portfolio optimization XML data format

declarations
SHARES: set of string ! Set of shares
RISK: set of string ! Set of high-risk values among shares
NA: set of string ! Set of shares issued in N.-America
RET: array(SHARES) of real ! Estimated return in investment

AllData: xmldoc ! XML document
ShareList: list of xmleltref ! List of XML elements

end-declarations

! Reading data from an XML file
load(AllData, "folio.xml")
getchildren(getroot(AllData), ShareList, "share")

RISK:= union(l in ShareList | getattr(l,"risk")="high")
{getstrattr(l,"name")}
NA:= union(l in ShareList | getattr(l,"region")="NA")
{getstrattr(l,"name")}

forall(l in ShareList) RET(getstrattr(l,"name")):= getintattr(l, "ret")

• Data file folio.xml:

<portfolio>
<share name="treasury" ret="5" dev="0.1" country="Canada"

region="NA" risk="low" />
<share name="hardware" ret="17" dev="19" country="USA"

region="NA" risk="high" />
...
<share name="electronics" ret="21" dev="16" country="Japan"

region="Asia" risk="high" />
</portfolio>

declarations
SHARES: set of string ! Set of shares
frac: array(SHARES) of mpvar ! Fraction of capital used per share

AllData: xmldoc ! XML document
Share,Root,Sol: xmleltref ! XML elements

end-declarations

! Create solution representation in XML format
Root:= setroot(AllData, "result")
Sol:= add(Root, "solution")
forall(s in SHARES) do
Share:= add(Sol, "share")
setattr(Share, "name", s)
Share.content:= frac(s).sol

end-do

save(AllData, "result.xml") ! Save solution to XML format file
save(AllData, "") ! Display XML format solution on screen

Mosel: Selected new features c©2010 Fair Isaac Corporation. All rights reserved. page 16

• Generated output file result.xml:

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>

<result>
<solution>
<share name="treasury">0.3</share>
<share name="hardware">0</share>
...
<share name="electronics">0</share>

</solution>
</result>

smew distribution

• Available for download from the Mosel open
source webpage

• Archive contains

– module source file: smew.c
– module library file: smew.dso (copy into

subdirectory dso)
– library files: *expat.* and *scew.*

(copy into subdirectory bin [Windows] or
lib [Unix])

– documentation: smew.txt
– examples: folioxml.mos,
folioxmlqp.mos, booksearch.mos,
xmltest.mos

5 Application examples

Notes

5.1 Alternative interfaces: Portfolio rebalancing

Portfolio rebalancing: Problem description

• Modify the composition of an investment port-
folio as to achieve or approach a specified in-
vestment profile.

Application architecture

• Single, configurable model file
• Different interfaces for model execution

– stand-alone mode (command line or
through Xpress-IVE) for development

– graphical interface (written with XAD) for
single model runs and simulation

– Java application for running batches of
model instances

Application examples c©2010 Fair Isaac Corporation. All rights reserved. page 17

Optimization application in Mosel
Standalone

Data files Mosel model

IVE

Output files

start application
return results

Optimization application in Mosel
XAD GUI

Data files Mosel model

XAD

Output files

output
Summary

ration file
Configu−

start application
return results

Optimization application in Mosel
Embedded into host application

Mosel model

Output files

output
Summary start application

return results

JavaData files

Optimization application in Mosel
Alternative interfaces

output
Summary

Data files

start application

Mosel model

XAD IVE Java

Output files

output
Summary

Data filesration file
Configu−

return results
output
Summary

Application examples c©2010 Fair Isaac Corporation. All rights reserved. page 18

Input

• Stand-alone and XAD: data input from text
files directly into Mosel

– uses a filter module to accomodate differ-
ent number formats

• Java: data read and stored by host application;
communication with model instances through
memory

Output

• Textual output log on screen or to file
• Optionally detailed HTML output
• Java: summary statistics of multiple runs
• XAD:

– summary statistics in the case of multiple
runs

– optional output to Excel

XAD interface

• Graphical user interface (Windows)
• Configuration of model runs

– data files
– parameter settings
– selection of constraints

• Choice of solving mode:

– repeated runs for a single model (simula-
tion)

– solve all instances from customer file
(evaluation of parameter settings)

• Graphical comparison of results

XAD interface: Detailed results

Application examples c©2010 Fair Isaac Corporation. All rights reserved. page 19

XAD interface: Parameter and version log

XAD interface: Multiple run summary

Some highlights

• Model:

– easy maintenance through single model
– deployment as BIM file: no changes to

model by end-user
– language extensions according to specific

needs

• Interfaces:

– several run modes adapted to different
types of usages

– efficient data exchange with host applica-
tion through memory

– parallel model runs (Java) or repeated se-
quential runs (XAD)

Application examples c©2010 Fair Isaac Corporation. All rights reserved. page 20

5.2 Distributed Mosel: Client-server

Distributed Mosel: Problem description

• Multi-user optimization application process-
ing a large number of optimization model in-
stances

• Idea: replace the preselected, static assign-
ment of optimization runs by a Mosel server
that controls the job queues

Distributed Mosel: Client-server architecture

Mosel server

User

User

D
at

ab
as

e

Production
machine

machine
Production

... ...
Distributed Mosel: Highlights

• Use Mosel lists for representation of dynamic
queueing system

• Mosel master (’server’) model communicates
with database and handles remote submodels

5.3 Visualization: Aircraft routing

Aircraft routing: Problem description

• For given sets of flights and aircraft, determine
which aircraft services a flight.

• Aircraft are not identical

– they cannot all service every flight
– a specific maintenance site must be used

per plane
– some scheduled long maintenance breaks

• Starting condition: each aircraft has a starting
position and a specific amount of accumulated
flight minutes

Application examples c©2010 Fair Isaac Corporation. All rights reserved. page 21

Aircraft routing: Representation

• Temporal (activity on node) network:

– a flight corresponds to a node
– ’cost’ of node: flight minutes (6= elapsed

time)
– successor nodes: flights starting from a

destination within a given time window
after arrival of predecessor

– maintenance: represented by a node
– aircraft: commodity traveling through the

network

Aircraft routing: Decomposition

• Different views are possible:

– per time unit (e.g., day)
– per commodity (aircraft)

• Idea: generate set of feasible routes per
aircraft by solving optimization subproblems
maximizing the flight minutes up to each
maintenance stop

– iteratively force usage of ’less preferred’
flights

– may keep suboptimal solutions

Aircraft routing: Application architecture

• Master problem: route selection
• Subproblems: route generation (one instance

per plane)

– parallel, possibly remote, execution of
submodels

• User interface (optional): XAD GUI

Application examples c©2010 Fair Isaac Corporation. All rights reserved. page 22

Aircraft routing: Application GUI

Aircraft routing: Visualization

• Visualization of input data helps with under-
standing and analysis of the problem

• Representation of intermediate results during
development (IVE) or as progress report to
users (XAD)

Aircraft routing: User interaction

• Manual construction of routes
• Editing generated plans

Application examples c©2010 Fair Isaac Corporation. All rights reserved. page 23

Summary

Notes

• Have seen:

– design choices for optimization applica-
tions

• Xpress-Mosel:

– recent developments make possible im-
plementation of complex algorithms and
a high degree of user interaction

– unique features for handling large-scale
problems:
support of decomposition, concurrent
solving, distributed computing, and also
64bit coefficient indexing

Where to get more information

• Xpress website:

– http://www.fico.com/xpress

• Xpress resources (documentation, whitepa-
pers)

– http://optimization.fico.com

• Searchable on-line examples database:

– http://examples.xpress.fico.com

• Trial download:

– http://decisions.fico.com/downloadTrial.html

Summary c©2010 Fair Isaac Corporation. All rights reserved. page 24

	Modeling platforms
	Application design
	Xpress-Mosel
	Mosel: Selected new features
	Distributed model execution
	IO callbacks
	XML interface

	Application examples
	Alternative interfaces: Portfolio rebalancing
	Distributed Mosel: Client-server
	Visualization: Aircraft routing

	Summary

