
LocalSolver : Modeling and solving difficult optimization
problems by local search

LocalSolver is a math programming solver based on local search. LocalSolver can be used either
through its APIs for classical programming languages (C++, Java, C#) or with a dedicated mo-
deling language. In this exercise we will use the modeling language for solving several optimization
problems.

This exercise consists in two parts. The first part will help you pick up the basic techniques on
a simple problem. Then a non linear batch scheduling problem will be considered.

1 A simple knapsack problem

LocalSolver is launched from the command line and executes ”.lsp” files. These files are made
of four fonctions : input, model, param, output. The documentation of the modeling language
is available at :
http://www.localsolver.com/quicktouroflocalsolversmodeler.html.

The function input allows declaring and reading the problem data. The file ”kp 100 1.in”
describes a knapsack instance in the following format :

– number of objects,
– weight of each object,
– value of each object,
– size of the knapsack.
The reading of this file is achieved in a few lines of code :

function input(){

inFile = openRead("kp_100_1.txt");

nbItems = readInt(inFile);

for [i in 1..nbItems] weights[i] = readInt(inFile);

for [i in 1..nbItems] values[i] = readInt(inFile);

knapsackBound = readInt(inFile);

}

The function model allows declaring the model to be optimized. The knapsack problem reads
as follows :

function model(){

// 0-1 decisions

for [i in 1..nbItems] x[i] <- bool();

// weight constraint

knapsackWeight <- sum[i in 1..nbItems](weights[i] * x[i]);

constraint knapsackWeight <= knapsackBound;

// maximize value

knapsackValue <- sum[i in 1..nbItems](values[i] * x[i]);

maximize knapsackValue;

}

The function param allows setting some search parameters. For the knapsack problem, we
will just set a time limit of 5 seconds :

function param(){

lsTimeLimit=5;

}

1



The function output allows printing some values at the end of the search. For instance we can
print the value of the knapsack and the selected objetcs :

function output(){

println("Knapsack value: " + getValue(knapsackValue));

print("Knapsack items: ");

for[i in 1..nbItems]{

if(getValue(x[i]) == 1)

print(i + ", ");

}

println();

}

◃Q1: Write a ”knapsack.lsp” model allowing to solve this knapsack problem. Test this model
on the instance ”kp 100 1.txt”.

In order to solve this model, the launching command is localsolver knapsack.lsp. It starts
a resolution by LocalSolver for 5 seconds and prints to the console :

Model:

expressions = 479, operands = 602

decisions = 100, constraints = 1, objectives = 1

Param:

time limit = 5 sec, no iteration limit

seed = 0, nb threads = 2, annealing level = 1

Objectives:

Obj 0: maximize, no bound

Phases:

Phase 0: time limit = 5 sec, no iteration limit, optimized objective = 0

Phase 0:

[0 sec, 0 itr]: obj = (0), mov = 0, inf < 0.1%, acc < 0.1%, imp = 0

[...]

[5 sec, 6127487 itr]: obj = (41700), mov = 12511689, inf = 42.6%, acc = 36.3%,

imp = 207

6127487 iterations, 12511689 moves performed in 5 seconds

Feasible solution: obj = (41700)

Run output...

Knapsack value: 41700

Knapsack items: 1, 3, 4, 5, 6, [...] , 91, 94, 95, 96, 98, 99, 100,

◃Q2: Compare the number of iterations performed int 5 seconds to the number of decision
variables on the different instances ”kp i 1.txt”.

◃Q3: Add instructions to print (at the end of the resolution) the weight of objects in the
knapsack and the capacity of the knapsack.

◃Q4: Add a secondary objective minimizing the number of items in the knapsack. By permu-
ting objectives, show that they are considered in lexicographic order.

2



2 Batch scheduling

In this section we consider a batch scheduling problem with numerous industrial applications.
We have a single production system (oven, cleaning machine,...). All demands are known and
available at the beginning of the planning horizon. There are K orders to be satisfied. Each order
is defined by a quantity rk and a due date dk. If order k is delivered after date dk, a penalty βk

must be paid. No penalty is applied when the order is delivered earlier than its due date. The
production is processed by batch whose size is between b et B. Each batch i has a starting date
Si and a completion date Ci. The duration of the batch (Ci −Si) is equal to its size (the resource
produces one unit of product per unit of time). Each order produced in batch i is available at date
Ci. The production cost of qki units of of order k in batch i is βkq

k
i (Ci−dk) if batch i is completed

after the due date dk, 0 otherwise. No batch setup cost is considered (π = 0). The problem consists
in finding a schedule minimizing the sum of production costs.

2.1 Unsplittable orders

We will first consider than order cannot be splitted, that is to say that each order is assigned
to a single batch.

◃Q5: Model (on paper) this problem as an optimization problem with binary decisions.

Instance files have the following format :
– number of orders K,
– minimum batch size b,
– maximum batch size B,
– quantity for each order (one value per order) rk,
– due date (one value per order) dk,
– tardiness penalty (one value per order) βk.

◃Q6: Write a LocalSolver model reading instances for this batch scheduling problem and
producing feasible solutions. To do this we will minimize a fake objective function , for instance :
minimize 1. Test the model on instance file ”instanceA.txt”.

◃Q7: Introduce expressions defining from decision variables :start and end dates of each batch
and tardiness penalties. Test this model on instances : ”instanceA.txt”, ”instanceA2.txt”, ”ins-
tanceA3.txt”.

2.2 Splittabled orders

Now we consider the case where each order can be splitted and assigned to one or several
batchs. Instance file have the same format as before.

◃Q8: Model (on paper) this problem as an optimization problem with binary decisions. Com-
pare the number of decisions in this model and in the previous one.

◃Q9: Create a new LocalSolver model to solve this problem and compare solutions found with
the unsplittable model and the splittable model. Test the model on instance ”instanceB.txt”.

◃Q10: Test the model on instances ”instanceC.txt” and ”instanceD.txt”. Comment the solu-
tion returned by LocalSolver.

When the problem is too constrained and finding an initial feasible solution is difficult, Lo-
calSolver relaxes constraints and minimize the number of violated constraints. In order to guide
the search for a feasible solution, we can also relax a constraint and add it as first optimization
criterion. Such a constraint is called a soft constraint.

◃Q11: Relax the constraint on the minimum batch size and find a solution to instances
”instanceC.txt” and ”instanceD.txt”.

Another approach consists in writing an extended formulation of the problem. For the batch
scheduling problem we can generated all possible patterns for a batch. Then the problem consists

3



in assigning a pattern to each batch. The file ”instanceD etendue.txt” contains an extended for-
mulation of ”instanceD.txt” with the following format :

– number of orders K,
– minimum batch size b,
– maximum batch size B,
– quantity for each order (one value per order) rk,
– due date (one value per order) dk,
– tardiness penalty (one value per order) βk.
– number of patterns M ,
– quantity of order 1 in pattern 1, of order 2 in pattern 1, ... of order K in pattern 1
– quantity of order 1 in pattern 2, of order 2 in pattern 2, ... of order K in pattern 2
– ...
– quantity of order 1 in pattern M , of order 2 in pattern M , ... of order K in pattern M

◃Q12: Write an extended model for the batch scheduling problem and solve instance ”instan-
ceD etendue.txt”. Compare the number of decisions, expressions and the cost of solutions in the
extended and splittable models.

◃Q13: Write a LocalSolver model reading a compact instance, generating the extended model
and solving this extended model. Compare results obtained on instance ”instanceE.txt” to results
obtained with models with relaxed formulation.

4


